fluorescent biosensor
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 118)

H-INDEX

37
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 561
Author(s):  
Andreia C. M. Rodrigues ◽  
Maria Vittoria Barbieri ◽  
Marco Chino ◽  
Giuseppe Manco ◽  
Ferdinando Febbraio

The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser–His–Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Alexander I. Kostyuk ◽  
Maria-Armineh Tossounian ◽  
Anastasiya S. Panova ◽  
Marion Thauvin ◽  
Roman I. Raevskii ◽  
...  

AbstractThe lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M−1s−1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jörg W. Wegener ◽  
Ahmed Wagdi ◽  
Eva Wagner ◽  
Dörthe M. Katschinski ◽  
Gerd Hasenfuss ◽  
...  

Missense mutations in the cardiac ryanodine receptor type 2 (RyR2) characteristically cause catecholaminergic arrhythmias. Reminiscent of the phenotype in patients, RyR2-R2474S knockin mice develop exercise-induced ventricular tachyarrhythmias. In cardiomyocytes, increased mitochondrial matrix Ca2+ uptake was recently linked to non-linearly enhanced ATP synthesis with important implications for cardiac redox metabolism. We hypothesize that catecholaminergic stimulation and contractile activity amplify mitochondrial oxidation pathologically in RyR2-R2474S cardiomyocytes. To investigate this question, we generated double transgenic RyR2-R2474S mice expressing a mitochondria-restricted fluorescent biosensor to monitor the glutathione redox potential (EGSH). Electrical field pacing-evoked RyR2-WT and RyR2-R2474S cardiomyocyte contractions resulted in a small but significant baseline EGSH increase. Importantly, β-adrenergic stimulation resulted in excessive EGSH oxidization of the mitochondrial matrix in RyR2-R2474S cardiomyocytes compared to baseline and RyR2-WT control. Physiologically β-adrenergic stimulation significantly increased mitochondrial EGSH further in intact beating RyR2-R2474S but not in RyR2-WT control Langendorff perfused hearts. Finally, this catecholaminergic EGSH increase was significantly attenuated following treatment with the RyR2 channel blocker dantrolene. Together, catecholaminergic stimulation and increased diastolic Ca2+ leak induce a strong, but dantrolene-inhibited mitochondrial EGSH oxidization in RyR2-R2474S cardiomyocytes.


2021 ◽  
pp. 113902
Author(s):  
Shuting Li ◽  
Liye Zhu ◽  
Longjiao Zhu ◽  
Xiaohong Mei ◽  
Wentao Xu

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yusuke Nasu ◽  
Ciaran Murphy-Royal ◽  
Yurong Wen ◽  
Jordan N. Haidey ◽  
Rosana S. Molina ◽  
...  

Abstractl-Lactate, traditionally considered a metabolic waste product, is increasingly recognized as an important intercellular energy currency in mammals. To enable investigations of the emerging roles of intercellular shuttling of l-lactate, we now report an intensiometric green fluorescent genetically encoded biosensor for extracellular l-lactate. This biosensor, designated eLACCO1.1, enables cellular resolution imaging of extracellular l-lactate in cultured mammalian cells and brain tissue.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Vanessa Vongsouthi ◽  
Jason H. Whitfield ◽  
Petr Unichenko ◽  
Joshua A. Mitchell ◽  
Björn Breithausen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document