Two-dimensional correlation analysis of variable-temperature Fourier-transform mid- and near-infrared spectra of polyamide 11

2000 ◽  
Vol 521 (1-3) ◽  
pp. 37-47 ◽  
Author(s):  
P. Wu ◽  
H.W. Siesler
1993 ◽  
Vol 1 (2) ◽  
pp. 99-108 ◽  
Author(s):  
P. Robert ◽  
M.F. Devaux ◽  
A. Qannari ◽  
M. Safar

Multivariate data treatments were applied to mid and near infrared spectra of glucose, fructose and sucrose solutions in order to specify near infrared frequencies that characterise each carbohydrate. As a first step, the mid and near infrared regions were separately studied by performing Principal Component Analyses. While glucose, fructose and sucrose could be clearly identified on the similarity maps derived from the mid infrared spectra, only the total sugar content of the solutions was observed when using the near infrared region. Characteristic wavelengths of the total sugar content were found at 2118, 2270 and 2324 nm. In a second step, the mid and near infrared regions were jointly studied by a Canonical Correlation Analysis. As the assignments of frequencies are generally well known in the mid infrared region, it should be useful to study the relationships between the two infrared regions. Thus, the canonical patterns obtained from the near infrared spectra revealed wavelengths that characterised each carbohydrate. The OH and CH combination bands were observed at: 2088 and 2332 nm for glucose, 2134 and 2252 nm for fructose, 2058 and 2278 nm for sucrose. Although a precise assignment of the near infrared bands to chemical groups within the molecules was not possible, the present work showed that near infrared spectra of carbohydrates presented specific features.


2009 ◽  
Vol 63 (9) ◽  
pp. 1027-1033 ◽  
Author(s):  
Miriam Unger ◽  
Shigeaki Morita ◽  
Harumi Sato ◽  
Yukihiro Ozaki ◽  
Heinz W. Siesler

Generalized two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy were applied to explore the melting behavior of non-annealed and annealed poly(3-hydroxybutyrate) (PHB) homopolymer as studied by variable-temperature Fourier transform infrared (FT-IR) spectroscopy. The absorption band of the C=O stretching vibration was employed to investigate the structural changes during the heating process (30–200 °C). Non-annealed PHB showed a recrystallization process in the temperature range 30–120 °C. In the asynchronous 2D correlation spectrum we clearly captured the existence of two components in the crystallinity-sensitive wing of the C=O stretching mode: a well-ordered crystalline state at lower wavenumbers (1718 cm−1) and a less ordered crystalline state at higher wavenumbers (1724 cm−1). These crystallinity-sensitive bands at 1718 and 1724 cm−1, which are not readily detectable in the one-dimensional (1D) FT-IR spectra, share asynchronous cross-peaks with bands at around 1737 and 1747 cm−1 assignable to the C=O stretching absorptions due to the amorphous components. In the case of the melting process of non-annealed PHB in the temperature range 120–200 °C, it is helpful to use the PCMW2D correlation analysis, which indicates the recrystallization between 40 and 110 °C by the shift of the C=O stretching band from 1726 cm−1 to 1722 cm−1 and the sharp change to the broad amorphous C=O stretching absorption at 1747 cm−1 at the melting temperature of PHB around 190 °C. For an annealed sample of PHB only the melting behavior was observed in the PCMW2D correlation analysis by the sharp transition from the crystalline to the amorphous C=O stretching band.


Sign in / Sign up

Export Citation Format

Share Document