The initial transient of the irradiation growth in a zirconium alloy

2000 ◽  
Vol 279 (2-3) ◽  
pp. 301-307 ◽  
Author(s):  
A.M. Fortis ◽  
H.C. González
2020 ◽  
Author(s):  
Patrick Champlin ◽  
Christian Petrie ◽  
Annabelle Le Coq ◽  
Kurt Smith ◽  
Kory Linton

2000 ◽  
Vol 279 (2-3) ◽  
pp. 360-363 ◽  
Author(s):  
H.C González ◽  
A.M Fortis ◽  
G.D.H Coccoz

2020 ◽  
Vol 86 (8) ◽  
pp. 32-37
Author(s):  
V. V. Larionov ◽  
Xu Shupeng ◽  
V. N. Kudiyarov

Nickel films formed on the surface of zirconium alloys are often used to protect materials against hydrogen penetration. Hydrogen adsorption on nickel is faster since the latter actively interacts with hydrogen, oxidizes and forms a protective film. The goal of the study is to develop a method providing control of hydrogen absorption by nickel films during vacuum-magnetron sputtering and hydrogenation via measuring thermoEMF. Zirconium alloy E110 was saturated from the gas phase with hydrogen at a temperature of 350°C and a pressure of 2 atm. A specialized Rainbow Spectrum unit was used for coating. It is shown that a nickel film present on the surface significantly affects the hydrogen penetration into the alloy. A coating with a thickness of more than 2 μm deposited by magnetron sputtering on the surface of a zirconium alloy with 1% Nb, almost completely protects the alloy against hydrogen penetration. The magnitude of thermoemf depends on the hydrogen concentration in the zirconium alloy and film thickness. An analysis of the hysteresis width of the thermoEMF temperature loop and a method for determining the effective activation energy of the conductivity of a hydrogenated material coated with a nickel film are presented. The results of the study can be used in assessing the hydrogen concentration and, hence, corrosion protection of the material.


2018 ◽  
Vol 0 (2) ◽  
pp. 38-45
Author(s):  
Yu. V. Panichkin ◽  
V. P. Zakharova ◽  
Yu. L. Konopliova ◽  
A. Yu. Gavrilishin ◽  
E. V. Beshlyaga ◽  
...  

Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract Schmelzmetall Hovadur CCZ is a heat-treatable, copper-chromium-zirconium alloy. In the solution heat-treated and artificially aged condition, this alloy exhibits high thermal and electrical conductivity along with high strength and a high softening temperature. Hovadur CCZ evolved from CuCr1 (CW105C), a precipitation-hardenable alloy first made in the 1930s for spot welding electrodes, for which strength and hardness at temperatures up to 500 °C (930 °F), as well as good electrical and thermal conductivity, are essential. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Cu-912. Producer or source: Schmelzmetall AG.


Alloy Digest ◽  
1956 ◽  
Vol 5 (7) ◽  

Abstract DOWMETAL HZ32XA is a magnesium-thorium-zinc-zirconium alloy having good high temperature creep resistance, and is recommended for applications at elevated temperatures. It is used in the artificially aged condition (T5). This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: Mg-26. Producer or source: The Dow Chemical Company.


Alloy Digest ◽  
1965 ◽  
Vol 14 (3) ◽  

Abstract JESSOP-SAVILLE ZIRCONIUM Alloy has a high melting point and possesses excellent corrosion resistance coupled with low neutron absorption properties. It is equivalent to ZIRCALOY 2. It is recommended for pressurized water reactors. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Zr-2. Producer or source: Jessop-Saville Ltd, Brightside Works.


Sign in / Sign up

Export Citation Format

Share Document