Choosing an accelerated corrosion test

2002 ◽  
Vol 100 ◽  
pp. 572-578 ◽  
Author(s):  
Frank Altmayer
2016 ◽  
Vol 90 ◽  
pp. 01040 ◽  
Author(s):  
Liza Anuar ◽  
Astuty Amrin ◽  
Roslina Mohammad ◽  
Ali Ourdjini

2014 ◽  
Vol 599-601 ◽  
pp. 111-113
Author(s):  
Dan Feng Zhang ◽  
Xiao Ming Tan ◽  
Dan Gui Zhang ◽  
Fang Zhang ◽  
Wei Zhang

Corrosion exists everywhere. It’s very widespread that the aluminum alloy aircraft structure suffers the corrosion damage under the marine environment particularly. The equivalent accelerated corrosion test of the new aluminum alloy 2B06 and 7B04 was carried out.Corrosion damage was inspected and measured through microscope. The rule of the corrosion damage can be obtained by statistical analysis. And which can supply the reference basis for the corrosion damage repair and evaluating the calendar life.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 753 ◽  
Author(s):  
Fangyuan Xu ◽  
Yuanli Chen ◽  
Xianglong Zheng ◽  
Rujin Ma ◽  
Hao Tian

To study the corrosion degradation of cable wires in a bridge’s life, this research work created an accelerated corrosion test device, which sought to identify an optimal constant strain level. An accelerated corrosion test was carried out and the corroded specimens were scanned using super depth 3D microscopy technology. Mass loss and minimum cross-sectional diameter was measured to understand the degradation characteristics of cable wires at variable strains and corrosion time. The variation of elastic modulus, yield load, and ultimate load of corroded wires, subjected to a tensile test, were analyzed. The experimental results illustrate that the average mass loss ratio of the corroded cable wires increases nonlinearly as corrosion time increases. The higher the stress level, the more serious the corrosion level. The minimum cross-sectional diameter has good correlation with corrosion time and stress level. The elastic modulus of wires does not change significantly with the increase of corrosion time. Yield load and ultimate load decreases with the increase of strain level, and the rates of decline under different strains are nonlinear.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed A. Abouhussien ◽  
Assem A. A. Hassan

Reinforced concrete structures, especially those in marine environments, are commonly subjected to high concentrations of chlorides, which eventually leads to corrosion of the embedded reinforcing steel. The total time to corrosion of such structures may be divided into three stages: corrosion initiation, cracking, and damage periods. This paper evaluates, both empirically and experimentally, the expected time to corrosion of reinforced concrete structures. The tested reinforced concrete samples were subjected to ten alternative curing techniques, including hot, cold, and normal temperatures, prior to testing. The corrosion initiation, cracking, and damage periods in this investigation were experimentally monitored by an accelerated corrosion test performed on reinforced concrete samples. Alternatively, the corrosion initiation time for counterpart samples was empirically predicted using Fick’s second law of diffusion for comparison. The results showed that the corrosion initiation periods obtained experimentally were comparable to those obtained empirically. The corrosion initiation was found to occur at the first jump of the current measurement in the accelerated corrosion test which matched the half-cell potential reading of around −350 mV.


2015 ◽  
Vol 764-765 ◽  
pp. 1124-1128 ◽  
Author(s):  
Wei Ting Lin ◽  
Yuan Chieh Wu ◽  
An Cheng ◽  
Tzu Ying Lee

This study is aim to evaluate the dynamic response variation of the scale-down reinforced concrete frame specimen under accelerated corrosion conditions. The specimens achieved the accelerated corrosion test by immersing in the accelerated corrosion test. Open circuit potential, corrosion rate, natural frequencies, displacements, accelerations and response spectral curves were tested and discussed. Test results presented that the corroded reinforced concrete specimens presented the changes in the dynamic response especially natural frequencies and response spectrum. This study provided further insight on the variation of seismic response behaviors in the deteriorated reinforced concrete structures and hoped to useful for structural assessments and appraisals applied to full-scale structures.


Sign in / Sign up

Export Citation Format

Share Document