Case study: the design of a mixed-signal global positioning system receiver using multichip module packaging

1997 ◽  
Vol 37 (4) ◽  
pp. 703
Author(s):  
P.J. Zabinski ◽  
M.E. Vickberg ◽  
B.K. Gilbert ◽  
P.J. Zucarelli ◽  
D.V. Weninger ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 230
Author(s):  
Onel Pérez-Fernández ◽  
Juan Carlos García-Palomares

Moped-style scooters are one of the most popular systems of micro-mobility. They are undoubtedly good for the city, as they promote forms of environmentally-friendly mobility, in which flexibility helps prevent traffic build-up in the urban centers where they operate. However, their increasing numbers are also generating conflicts as a result of the bad behavior of users, their unwarranted use in public spaces, and above all their parking. This paper proposes a methodology for finding parking spaces for shared motorcycle services using Geographic information system (GIS) location-allocation models and Global Positioning System (GPS) data. We used the center of Madrid and data from the company Muving (one of the city’s main operators) for our case study. As well as finding the location of parking spaces for motorbikes, our analysis examines how the varying distribution of demand over the course of the day affects the demand allocated to parking spaces. The results demonstrate how reserving a relatively small number of parking spaces for scooters makes it possible to capture over 70% of journeys in the catchment area. The daily variations in the distribution of demand slightly reduce the efficiency of the network of parking spaces in the morning and increase it at night, when demand is strongly focused on the most central areas.


Author(s):  
Prabha Ramasamy ◽  
Mohan Kabadi

Navigational service is one of the most essential dependency towards any transport system and at present, there are various revolutionary approaches that has contributed towards its improvement. This paper has reviewed the global positioning system (GPS) and computer vision based navigational system and found that there is a large gap between the actual demand of navigation and what currently exists. Therefore, the proposed study discusses about a novel framework of an autonomous navigation system that uses GPS as well as computer vision considering the case study of futuristic road traffic system. An analytical model is built up where the geo-referenced data from GPS is integrated with the signals captured from the visual sensors are considered to implement this concept. The simulated outcome of the study shows that proposed study offers enhanced accuracy as well as faster processing in contrast to existing approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wusheng Liu ◽  
Qian Tan ◽  
Lisheng Liu

The planning and operation of urban buses depend heavily on the time-varying origin-destination (OD) matrix for bus passengers. In most cities, however, only boarding information is recorded, while the alighting information is not available. This paper proposes a novel method to predict the destination of a single bus passenger based on bus smartcard data, metro smartcard data, and global positioning system (GPS) bus data. First, the attractiveness of each bus stop in a bus line was evaluated, considering the attractiveness of nearby metro stations. Then, the exploration and preferential return (EPR) model was employed to estimate the probability of a bus stop to be the alighting stop, i.e., the destination, of a passenger. The estimation result was obtained through a simulation based on the Monte Carlo (MC) algorithm. The effectiveness of our method was proved through a case study on the bus network in Shenzhen, China.


Author(s):  
P.J. Zabinski ◽  
B.K. Gilbert ◽  
P.J. Zucarelli ◽  
D.V. Weninger ◽  
T.W. Keller

Author(s):  
Matthew Fairbank ◽  
Jamie Highton ◽  
Matthew Daniels ◽  
Craig Twist

This study reports on the content and periodisation of the preseason field-based training for a professional rugby league team. Thirty professional male rugby league players (26 ± 5 years, 180.9 ± 6.5 cm, 94 ± 9 kg) completed an 8-week preseason. Global positioning system devices and heart rate were used to monitor physical and physiological responses of different field-based training components (speed, conditioning, rugby skill and game-based training). Rugby skill training contributed the most to the total distance covered, conditioning was the greatest contributor to high-speed running (>15 km/h) and game-based training provided the greatest high metabolic distance (>20 W/kg) and overall external load. Game-based training provided the greatest time with heart rate ≥80% estimated maximum. The weekly preseason cycle had lower loads on Monday and Thursday whereas Tuesday and Friday produced the highest loads. The preseason described herein adopted a progressive overload comprising a weekly undulating cycle. This study emphasises how skill and games-based training contributes significantly to the overall load of a professional rugby league team's preseason with more traditional conditioning promoting high-speed running load and high metabolic load.


Sign in / Sign up

Export Citation Format

Share Document