A Preliminary Study Measuring the Quadriceps Angle of Healthy Adult Subjects while Standing in the Anatomical Position and During the Stance Phase of the Gait Cycle, Using the Peak-5 Video Motion Analysis System

Physiotherapy ◽  
1998 ◽  
Vol 84 (4) ◽  
pp. 166
Author(s):  
FH Kitsell ◽  
AW Wilson
2005 ◽  
Vol 95 (4) ◽  
pp. 376-382 ◽  
Author(s):  
Linda Dowdy Youberg ◽  
Mark W. Cornwall ◽  
Thomas G. McPoil ◽  
Patrick R. Hannon

The purpose of this study was to determine the proportion of available passive frontal plane rearfoot motion that is used during the stance phase of walking. Data were collected from 40 healthy, asymptomatic volunteer subjects (20 men and 20 women) aged 23 to 44 years. Passive inversion and eversion motion was measured in a nonweightbearing position by manually moving the calcaneus. Dynamic rearfoot motion was referenced to a vertical calcaneus and tibia and was measured using a three-dimensional electromagnetic motion-analysis system. The results indicated that individuals used 68.1% of their available passive eversion range of motion and 13.2% of their available passive inversion range of motion during walking. The clinical implication of individuals’ regularly operating at or near the end point of their available rearfoot eversion range of motion is discussed. (J Am Podiatr Med Assoc 95(4): 376–382, 2005)


Author(s):  
F-C Su ◽  
L-C Kuo ◽  
H-Y Chiu ◽  
H-Y Hsu

The aim of the study was to verify the application of a three-dimensional video motion analysis system to evaluate maximal fingertip motion area and angular variation of the hand by comparison and correlation with videofluoroscopic analysis. Eight normal subjects were recruited in this study. The maximal motion area of the fingertip and the angles of the metacarpal phalangeal (MP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints in performing five sequential postures for functional evaluation of the hand were measured using a video motion analysis system and a fluoroscopy system respectively. The results indicated that the intraclass correlation coefficient (ICC) of the calculated maximal fingertip motion area between the two methods was 0.9597. The ICC for total active motion (TAM) measurements of three finger joints was 0.940 between the surface and bony landmarks by fluoroscopy, 0.952 between the surface landmarks from fluoroscopy and motion analysis, and 0.927 between the bony landmark from fluoroscopy and surface markers from motion analysis. The ICC for angular measurements between three different paired assessments was 0.9650, 0.8896 and 0.8799 for the MP, PIP and DIP joints respectively. The results indicate that motion analysis is a practical method for assessing impairment of the hand.


2001 ◽  
Vol 248 (11) ◽  
pp. 944-949 ◽  
Author(s):  
Pierre Krystkowiak ◽  
Jean Louis Blatt ◽  
Jean Louis Bourriez ◽  
Alain Duhamel ◽  
Myriam Perina ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Rixu Liu ◽  
Dongyang Qian ◽  
Yushu Chen ◽  
Jianyu Zou ◽  
Shicong Zheng ◽  
...  

Sensors ◽  
2010 ◽  
Vol 10 (12) ◽  
pp. 10733-10751 ◽  
Author(s):  
Rodrigo Pérez ◽  
Úrsula Costa ◽  
Marc Torrent ◽  
Javier Solana ◽  
Eloy Opisso ◽  
...  

Author(s):  
Nicholas H. Yang ◽  
H. Nayeb-Hashemi ◽  
Paul K. Canavan

Osteoarthritis (OA) is a degenerative disease of articular cartilage that may lead to pain, limited mobility and joint deformation. It has been reported that abnormal stresses and irregular stress distribution may lead to the initiation and progression of OA. Body weight and the frontal plane tibiofemoral angle are two biomechanical factors which could lead to abnormal stresses and irregular stress distribution at the knee. The tibiofemoral angle is defined as the angle made by the intersection of the mechanical axis of the tibia with the mechanical axis of the femur in the frontal plane. In this study, reflective markers were placed on the subjects’ lower extremity bony landmarks and tracked using motion analysis. Motion analysis data and force platform data were collected together during single-leg stance, double-leg stance and walking gait from three healthy subjects with no history of osteoarthritis (OA), one with normal tibiofemoral angle (7.67°), one with varus (bow-legged) angle (0.20°) and one with valgus (knocked-knee) angle (10.34°). The resultant moment and forces in the knee were derived from the data of the motion analysis and force platform experiments using inverse dynamics. The results showed that Subject 1 (0.20° valgus) had a varus moment of 0.38 N-m/kg, during single-leg stance, a varus moment of 0.036 N-m/kg during static double-leg stance and a maximum varus moment of 0.49 N-m/kg during the stance phase of the gait cycle. Subject 2 (7.67° valgus tibiofemoral angle) had a varus moment of 0.31 N-m/kg, during single-leg stance, a valgus moment of 0.046 N-m/kg during static double-leg stance and a maximum varus moment of 0.37 N-m/kg during the stance phase of the gait cycle. Subject 3 (10.34° valgus tibiofemoral angle) had a varus moment of 0.30 N-m/kg, during single-leg stance, a valgus moment of 0.040 N-m/kg during static double-leg stance and a maximum varus moment of 0.34 N-m/kg during the stance phase of the gait cycle. In general, the results show that the varus moment at the knee joint increased with varus knee alignment in static single-leg stance and gait. The results of the motion analysis were used to obtain the knee joint contact stress by finite element analysis (FEA). Three-dimensional (3-D) knee models were constructed with sagittal view MRI of the knee. The knee model included the bony geometry of the knee, the femoral and tibial articular cartilage, the lateral and medial menisci and the cruciate and the collateral ligaments. In initial FEA simulations, bones were modeled as rigid, articular cartilage was modeled as isotropic elastic, menisci were modeled as transversely isotopic elastic, and the ligaments were modeled as 1-D nonlinear springs. The material properties of the different knee components were taken from previously published literature of validated FEA models. The results showed that applying the axial load and varus moment determined from the motion analysis to the FEA model Subject 1 had a Von Mises stress of 1.71 MPa at the tibial cartilage while Subjects 2 and 3 both had Von Mises stresses of approximately 1.191 MPa. The results show that individuals with varus alignment at the knee will be exposed to greater stress at the medial compartment of the articular cartilage of the tibia due to the increased varus moment that occurs during single leg support.


2018 ◽  
Vol 13 (4) ◽  
Author(s):  
Pui Wa Fung ◽  
Kam Ming Mok ◽  
Ruen Shan Leow ◽  
Sai Chuen Fu ◽  
Patrick Shu Hang Yung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document