The validity of using a video-based motion analysis system for measuring maximal area of fingertip motion and angular variation

Author(s):  
F-C Su ◽  
L-C Kuo ◽  
H-Y Chiu ◽  
H-Y Hsu

The aim of the study was to verify the application of a three-dimensional video motion analysis system to evaluate maximal fingertip motion area and angular variation of the hand by comparison and correlation with videofluoroscopic analysis. Eight normal subjects were recruited in this study. The maximal motion area of the fingertip and the angles of the metacarpal phalangeal (MP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints in performing five sequential postures for functional evaluation of the hand were measured using a video motion analysis system and a fluoroscopy system respectively. The results indicated that the intraclass correlation coefficient (ICC) of the calculated maximal fingertip motion area between the two methods was 0.9597. The ICC for total active motion (TAM) measurements of three finger joints was 0.940 between the surface and bony landmarks by fluoroscopy, 0.952 between the surface landmarks from fluoroscopy and motion analysis, and 0.927 between the bony landmark from fluoroscopy and surface markers from motion analysis. The ICC for angular measurements between three different paired assessments was 0.9650, 0.8896 and 0.8799 for the MP, PIP and DIP joints respectively. The results indicate that motion analysis is a practical method for assessing impairment of the hand.

2021 ◽  
Author(s):  
Nam-Gi Lee ◽  
Jung-Hoon Ahn ◽  
Woo-Taek Lim

Abstract Background: Sports-related injuries are the most common in the lower extremities among physical regions, and overall injury rates were higher among males and persons aged 5–24 years. To evaluate impaired functional performance in sports training facilities and sports, a marker-less motion analysis system that can measure joint kinematics in bright indoor and outdoor environments is required. Objective: To establish the concurrent and angle-trajectory validity and intra-trial reliability of a novel multi-view image-based motion analysis system with marker-less during lower extremity tasks in healthy young men.Methods: Ten healthy young men participated voluntarily in this study. The hip and knee joint angles were collected using a multi-view image-based motion analysis system (marker-less) and a Vicon motion capture system (with markers) during the lower extremity tasks. Intraclass correlation coefficient (ICC) analyses were used to identify the concurrent and angle-trajectory validity and intra-trial reliability of the multi-view image-based motion analysis system.Results: In the concurrent validity, the correlation analysis revealed that the ICC3, k values on the hip and knee flexions during knee bending in sitting, standing, and squat movements were 0.747 to 0.936 between the two systems. In particular, the angle-trajectory validity was very high (ICC3, 1 = 0.859–0.998), indicating a high agreement between the two systems. The intra-trial reliability of each system was excellent (ICC3, 1 = 0.773–0.974), reflecting high reproducibility. Conclusion: We suggest that this novel marker-less motion analysis system is highly accurate and reliable for measuring joint kinematics of the lower extremities during the rehabilitation process and monitoring the sports performance of athletes in sports training facilities.


1996 ◽  
Vol 21 (5) ◽  
pp. 604-608 ◽  
Author(s):  
H-Y. CHIU ◽  
F. C. SU

We have used the motion analysis system to evaluate the maximal area of fingertip motion. Some modification in setting the cameras and use of a smaller marker is required. In this series, 58 examinations have been accomplished on 28 fingers with various traumatic injuries. The closed curve derived from the motion analysis system and the area calculated from it were easier to interpret and could be compared in serial examinations. A high linear correlation between the fingertip motion area and total active motion was found. The computer-aided motion analysis system complements the traditional methods of assessing an injured finger.


2001 ◽  
Vol 248 (11) ◽  
pp. 944-949 ◽  
Author(s):  
Pierre Krystkowiak ◽  
Jean Louis Blatt ◽  
Jean Louis Bourriez ◽  
Alain Duhamel ◽  
Myriam Perina ◽  
...  

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Aoife Healy ◽  
Kimberley Linyard-Tough ◽  
Nachiappan Chockalingam

While previous research has assessed the validity of the OptoGait system to the GAITRite walkway and an instrumented treadmill, no research to date has assessed this system against a traditional three-dimensional motion analysis system. Additionally, previous research has shown that the OptoGait system shows systematic bias when compared to other systems due to the configuration of the system's hardware. This study examined the agreement between the spatiotemporal gait parameters calculated from the OptoGait system and a three-dimensional motion capture (14 camera Vicon motion capture system and 2 AMTI force plates) in healthy adults. Additionally, a range of filter settings for the OptoGait were examined to determine if it was possible to eliminate any systematic bias between the OptoGait and the three-dimensional motion analysis system. Agreement between the systems was examined using 95% limits of agreement by Bland and Altman and the intraclass correlation coefficient. A repeated measure ANOVA was used to detect any systematic differences between the systems. Findings confirm the validity of the OptoGait system for the evaluation of spatiotemporal gait parameters in healthy adults. Furthermore, recommendations on filter settings which eliminate the systematic bias between the OptoGait and the three-dimensional motion analysis system are provided.


2021 ◽  
pp. 1-14
Author(s):  
Rixu Liu ◽  
Dongyang Qian ◽  
Yushu Chen ◽  
Jianyu Zou ◽  
Shicong Zheng ◽  
...  

Sensors ◽  
2010 ◽  
Vol 10 (12) ◽  
pp. 10733-10751 ◽  
Author(s):  
Rodrigo Pérez ◽  
Úrsula Costa ◽  
Marc Torrent ◽  
Javier Solana ◽  
Eloy Opisso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document