Middle Triassic shallow-water limestones from the Upper Muschelkalk of eastern France: the origin and depositional environment of some early Mesozoic fine-grained limestones

1998 ◽  
Vol 121 (1-2) ◽  
pp. 57-70 ◽  
Author(s):  
Philippe Duringer ◽  
Adam Vecsei
2018 ◽  
Vol 34 (2) ◽  
pp. 699
Author(s):  
Μ. ΚΑΤΗ

The facies analysis of the Eocene limestones in the Aghioi Pantes section in central Zakynthos, part of the Preapulian carbonate sequence in the greater area, showed three megafacies types: a) graded beds, in which two main subtypes have been recognized, medium- to thin-bedded calcarenites-calcilutites and thick-bedded ruditic calcarenites, consisting mainly of redeposited shallow-water carbonate sands (mostly bioclasts of nummulites and echinoids); based on their sedimentary structures they have been interpreted as low density turbidite and high density turbidite (or sandy debris flows) deposits correspondingly, b) calcareous conglomerates consisting of shallow-water facies lithoclasts and abundant pelagic intraclasts all of which have been interpreted as debris flow deposits and c) folded strata of pelagic-hemipelagic composition that have been interpreted as slumps. Subsequently, the studied limestones constitute exclusively deep-water resedimented facies having been deposited mainly through sediment gravity flows, carrying significant amounts of shallow-water bio- lithoclastic material. The distribution and the organization of this facies association, with the dominance in particular of the base cut-out turbidites, suggest as depositional environment of the studied Eocene limestones a "low" in the outer slope connecting the Preapulian platform with the adjacent Ionian basin.


1987 ◽  
Vol 35 ◽  
pp. 191-202
Author(s):  
M. J. Melchin

Ashgill age graptolites have been collected from seven sections of the Cape Phillips Formation across most of its outcrop belt. The earliest graptolite zone recognisable is that of Orthograptus fastigatus. It is correla­ted with the Dicellograptus ornatus · Zone of the northern Canadian Cordilllera and the Dicellograptus complexus Subzone of the Dicel/ograptus anceps Zone of Great Britain although no dicellograptids have been found at any of the present sections. The overlying zone is that of Paraorthograptus pacificus, an ea­sily recognisable zone around much of the world. Graptolites of the C/imacograptus extraordinarius and Glyptograptus persculptus zones appear to be en­tirely absent from this formation. This is attributed to the Late Ordovician glaciation which has induced regression and submarine erosion in many areas worldwide. The earliest recognisable Silurian zone varies from section to section due to buried or barren intervals and/or hiatuses of varying length. The Parakidograptus acuminatus Zone has been recognised at only one section. At the others, the Atavograptus atavus, the Lagarograptus acinaces-Coronograptus gregarius, the Monograptus convolutus or the Monograptus spiralis Zone (s.1.) are the earliest recognisable Silurian fau­nas. Relatively low fauna! diversities in the Ashgill and lowest Llandovery portion of the section and the to­tal lack of dicellograptids are interpreted to be due to relatively shallow water, outer shelf or carbonate ramp depositional environment.


2009 ◽  
Vol 17 (01) ◽  
pp. 29-43 ◽  
Author(s):  
CHARLES W. HOLLAND ◽  
DALE D. ELLIS

In shallow water environments where the uppermost sediment layer is a fine-grained fabric (e.g. clay or silty-clay), the observed reverberation may be dominated by scattering from the sub-bottom. Here, reverberation predictions from normal mode and energy flux models are compared for the case where the scattering arises from a sub-bottom half-space under a fine-grained sediment layer. It is shown that in such an environment, the position of the angle of intromission, in addition to the angular dependence of the scattering kernel, is a factor controlling the reverberation and its vertical angle distribution. It is also shown that the reverberation from a sub-bottom horizon is typically governed by higher grazing angles than the case where the scattering occurs at the water–sediment interface. There was generally very close agreement between the models as a function of frequency (200–1600 Hz), layer thickness (0–8 m), and range (1–15 km). The model comparisons, showing some differences, illuminate the result of different approximations in the two approaches.


2021 ◽  
Author(s):  
Victoria S. Engelschiøn ◽  
Øyvind Hammer ◽  
Fredrik Wesenlund ◽  
Jørn H. Hurum ◽  
Atle Mørk

<p>Several carbon isotope curves were recently published for the Early and Middle Triassic in Tethys. Recent work has also been done on the Early Triassic of Svalbard, but not yet for the Middle Triassic. This work is the first to measure δ<sup>13</sup>C for different Middle Triassic localities on Svalbard, which was then part of the Boreal Ocean on northern Pangea. Our aim is to understand the controls on the Svalbard carbon isotope curve and to place them in a global setting.</p><p>Correlating Triassic rocks around the world is interesting for several reasons. The Triassic Period was a tumultuous time for life, and the Arctic archipelago of Svalbard has shown to be an important locality to understand the early radiation of marine vertebrates in the Triassic. Much effort is also made to understand the development of the Barents Sea through Svalbard’s geology.</p><p>Carbon isotope curves are controlled by depositional environment and global fluctuations. Global factors such as the carbon cycle control the long-term carbon isotopic compositions, while short-term fluctuations may reflect the origin of organic materials in the sediment (e.g. algal or terrestrial matter), stratification of the water column, and/or surface water productivity. Carbon isotopes can therefore be useful to understand the depositional environment and to correlate time-equivalent rocks globally.</p><p>The dataset was collected through three seasons of fieldwork in Svalbard with localities from the islands Spitsbergen, Edgeøya and Bjørnøya. Detailed stratigraphic sampling has resulted in high-resolution δ<sup>13</sup>C curves. These show three strong transitions; 1) on the boundary between the Early and Middle Triassic, 2) in the middle of the formation and 3) at the Middle and Late Triassic boundary. Several Tethyan localities show a possibly similar Early-Middle Triassic signal. Current work in progress is sedimentological analysis by thin sections and X-ray fluorescence spectroscopy (XRF) to further understand the sedimentary environment.</p>


1983 ◽  
Vol 47 (345) ◽  
pp. 473-479 ◽  
Author(s):  
D. K. Hallbauer ◽  
K. von Gehlen

AbstractEvidence obtained from morphological and extensive trace element studies, and from the examination of mineral and fluid inclusions in Witwatersrand pyrites, shows three major types of pyrite: (i) detrital pyrite (rounded pyrite crystals transported into the depositional environment); (ii) synsedimentary pyrite (round and rounded aggregates of fine-grained pyrite formed within the depositional environmen); and (iii) authigenic pyrite (newly crystallized and/or recrystallized pyrite formed after deposition). The detrital grains contain mineral inclusions such as biotite, feldspar, apatite, zircon, sphene, and various ore minerals, and fluid inclusions with daughter minerals. Most of the inclusions are incompatible with an origin by sulphidization. Recrystallized authigenic pyrite occurs in large quantities but only in horizons or localities which have been subjected to higher temperatures during the intrusion or extrusion of younger volcanic rocks. Important additional findings are the often substantial amounts of pyrite and small amounts of particles of gold found in Archaean granites (Hallbauer, 1982) as possible source rocks for the Witwatersrand detritus. Large differences in Ag and Hg content between homogeneous single gold grains within a hand specimen indicate a lack of metamorphic homogenization. The influence of metamorphism on the Witwatersrand pyrites can therefore be described as only slight and generally negligible.


2013 ◽  
Vol 16 ◽  
pp. 53-64 ◽  
Author(s):  
Dev Kumar Syangbo ◽  
Naresh Kazi Tamrakar

Thick sedimentary sequence deposited in the foreland basin of the Nepal Himalaya is represented by the Siwalik Group. The Siwalik Group is well exposed in the Samari-Sukaura River area. The present study is focused in southern portion of the MBT around the Samari-Sukaura area for its depositional environment. The Middle Siwaliks of the Sukaura Road sections is overlained by the Lower Siwaliks which is separated by the Karki Khola Thrust. Extension of the Lower Siwaliks in the Jyamire Khola and the Bundal Khola becomes wider in the eastern Zone. Repetition of the Lower Siwaliks along the southern margin of the MBT is recognized. Depending on lithofacies assemblage and facies analysis, the two broad facies assemblages FA1 and FA2 have been distinguished. FA1 shows SB, FF, LA, LS and CH architectural elements and is interpreted as a product of the fine-grained meandering river system. FA2 shows SB, FF, LA, DA and CH architectural elements and is interpreted as a product of sandy mixed-load meandering river system. DOI: http://dx.doi.org/10.3126/bdg.v16i0.8884   Bulletin of the Department of Geology Vol. 16, 2013, pp. 53-64


Sign in / Sign up

Export Citation Format

Share Document