Protein Backbone Engineering through Total Chemical Synthesis: New Insight into the Mechanism of HIV-1 Protease Catalysis

Tetrahedron ◽  
2000 ◽  
Vol 56 (48) ◽  
pp. 9503-9513 ◽  
Author(s):  
Manuel Baca ◽  
Stephen B.H. Kent
2020 ◽  
Vol 26 (8) ◽  
pp. 802-814 ◽  
Author(s):  
Nemanja Turkovic ◽  
Branka Ivkovic ◽  
Jelena Kotur-Stevuljevic ◽  
Milica Tasic ◽  
Bojan Marković ◽  
...  

Background: Since the beginning of the HIV/AIDS epidemic, 75 million people have been infected with the HIV and about 32 million people have died of AIDS. Investigation of the molecular mechanisms critical to the HIV replication cycle led to the identification of potential drug targets for AIDS therapy. One of the most important discoveries is HIV-1 protease, an enzyme that plays an essential role in the replication cycle of HIV. Objective: The aim of the present study is to synthesize and investigate anti-HIV-1 protease activity of some chalcone derivatives with the hope of discovering new lead structure devoid drug resistance. Methods: 20 structurally similar chalcone derivatives were synthesized and their physico-chemical characterization was performed. Binding of chalcones to HIV-1 protease was investigated by fluorimetric assay. Molecular docking studies were conducted to understand the interactions. Results: The obtained results revealed that all compounds showed anti-HIV-1 protease activity. Compound C1 showed the highest inhibitory activity with an IC50 value of 0.001 μM, which is comparable with commercial product Darunavir. Conclusion: It is difficult to provide general principles of inhibitor design. Structural properties of the compounds are not the only consideration; ease of chemical synthesis, low molecular weight, bioavailability, and stability are also of crucial importance. Compared to commercial products the main advantage of compound C1 is the ease of chemical synthesis and low molecular weight. Furthermore, compound C1 has a structure that is different to peptidomimetics, which could contribute to its stability and bioavailability.


Open Biology ◽  
2013 ◽  
Vol 3 (11) ◽  
pp. 130100 ◽  
Author(s):  
Zhisheng Lu ◽  
Julien R. C. Bergeron ◽  
R. Andrew Atkinson ◽  
Torsten Schaller ◽  
Dennis A. Veselkov ◽  
...  

The HIV-1 viral infectivity factor (Vif) neutralizes cell-encoded antiviral APOBEC3 proteins by recruiting a cellular ElonginB (EloB)/ElonginC (EloC)/Cullin5-containing ubiquitin ligase complex, resulting in APOBEC3 ubiquitination and proteolysis. The suppressors-of-cytokine-signalling-like domain (SOCS-box) of HIV-1 Vif is essential for E3 ligase engagement, and contains a BC box as well as an unusual proline-rich motif. Here, we report the NMR solution structure of the Vif SOCS–ElonginBC (EloBC) complex. In contrast to SOCS-boxes described in other proteins, the HIV-1 Vif SOCS-box contains only one α-helical domain followed by a β-sheet fold. The SOCS-box of Vif binds primarily to EloC by hydrophobic interactions. The functionally essential proline-rich motif mediates a direct but weak interaction with residues 101–104 of EloB, inducing a conformational change from an unstructured state to a structured state. The structure of the complex and biophysical studies provide detailed insight into the function of Vif's proline-rich motif and reveal novel dynamic information on the Vif–EloBC interaction.


2007 ◽  
Vol 13 (1-2) ◽  
pp. 221-227 ◽  
Author(s):  
Silvia Frutos ◽  
Judit Tulla-Puche ◽  
Fernando Albericio ◽  
Ernest Giralt

Peptides 1990 ◽  
1991 ◽  
pp. 172-173 ◽  
Author(s):  
Stephen B. H. Kent ◽  
Dianne Alewood ◽  
John L. Andrews ◽  
Doug Bergman ◽  
Ross Brinkworth ◽  
...  
Keyword(s):  

2020 ◽  
Vol 117 (18) ◽  
pp. 9981-9990 ◽  
Author(s):  
Viviane M. Andrade ◽  
Carla Mavian ◽  
Dunja Babic ◽  
Thaissa Cordeiro ◽  
Mark Sharkey ◽  
...  

HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses constructed with individual envelope genes that were obtained from plasma of six individuals undergoing analytic treatment interruption (ATI). M-tropic viruses could also be enriched from post-ATI plasma using macrophage-specific (CD14) but not CD4+ T cell-specific (CD3) antibodies, suggesting that M-tropic viruses had a macrophage origin. Molecular clock analysis indicated that the establishment of M-tropic HIV-1 variants predated ATI. Collectively, these data suggest that macrophages are a viral reservoir in HIV-1–infected individuals on effective ART and that M-tropic variants can appear in rebounding viremia when treatment is interrupted. These findings have implications for the design of curative strategies for HIV-1.


2020 ◽  
Vol 63 (15) ◽  
pp. 8554-8566 ◽  
Author(s):  
Li Sun ◽  
Youmei Peng ◽  
Wenquan Yu ◽  
Yan Zhang ◽  
Lan Liang ◽  
...  

2011 ◽  
Vol 7 (8) ◽  
pp. 2348-2352 ◽  
Author(s):  
Paulo R. Batista ◽  
Gaurav Pandey ◽  
Pedro G. Pascutti ◽  
Paulo M. Bisch ◽  
David Perahia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document