Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor

2003 ◽  
Vol 37 (9) ◽  
pp. 2195-2205 ◽  
Author(s):  
Che Ok Jeon ◽  
Dae Sung Lee ◽  
Jong Moon Park
1994 ◽  
Vol 29 (7) ◽  
pp. 109-117 ◽  
Author(s):  
J. S. Čech ◽  
P. Hartman ◽  
M. Macek

Population dynamics of polyphosphate-accumulating bacteria (PP bacteria) was studied in a laboratory sequencing batch reactor simulating anaerobic-oxic sludge system. The competition between PP bacteria and another microorganism (“G bacteria”) for anaerobic-oxic utilization of acetate as the sole source of organic carbon was observed. The competition was found to be seriously influenced by protozoan and metazoan grazing: Predation-resistant “G bacteria” forming large compact flocs outcompeted PP bacteria. Several breakdowns of enhanced biological phosphorus removal were observed. The first one was related to the development of an euglenid flagellate Entosiphon sulcatus and attached ciliates Vorticella microstoma and V. campanula. The second system collapse was connected with a rapid proliferation of rotifers. An alternative-prey predation was thought to be a mechanism of PP bacteria elimination.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 69-76 ◽  
Author(s):  
I. M. Sudiana ◽  
T. Mino ◽  
H. Satoh ◽  
T. Matsuo

The microbial communities in activated sludge acclimated with either acetate or glucose as the major carbon source under phosphorus limited or rich conditions were investigated morphologically, phylogenetically and chemotaxonomically. The sludge with a minimized polyphosphate content was dominated by tetrad shaped bacteria, which were suspected to be ‘glycogen accumulating bacteria (GAOs) or G bacteria’ The sludge containing high polyphosphate was dominated by cluster forming coccus bacteria. Quinone analyses suggested that all the sludge tested contained various ubiquinones and menaquinones, of which the ubiquinones Q-8 and Q-10 were dominant. Analyses with rRNA targeted probes showed that beta sub class of Proteobacteria was most predominant in all sludges tested. Morphological, phylogenetic and chemotaxonomic investigation all indicated that both high and low P sludges are microbiologically diverse.


1994 ◽  
Vol 29 (7) ◽  
pp. 71-74 ◽  
Author(s):  
G. J. F. Smolders ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

Experiments have been performed, using a sequencing batch reactor, to examine the effect of pH on biological phosphorus removal in the activated sludge process. The results, which indicate that glycogen metabolism occurs during anaerobic conditions, are useful in elucidating the biochemical mechanisms involved in phosphorus-removal, and have potential implications for systems such as Phostrip.


1997 ◽  
Vol 35 (1) ◽  
pp. 19-26 ◽  
Author(s):  
E. Belia ◽  
P. G. Smith

The development of enhanced biological phosphorus removal (EBPR) through the bioaugmentation of a conventional activated sludge was studied. The objectives of the study were to evaluate the phosphorus removal capability of a sequencing batch reactor (SBR) when started with conventional activated sludge and augmented with a pure culture of Acinetobacter lwoffii. The effect of the addition of the pure culture on the reactor start up time, the settling properties of the sludge and on COD and nitrogen removal was also investigated. The effect of the removal of up to 70% of the bioaugmented biomass and its substitution with unconditioned sludge from a conventional sewage treatment plant was determined. This study has demonstrated that bioaugmentation can convert a conventional sewage works activated sludge to an EBPR sludge in 14 days. The sludge produced shows resilience to influent phosphate fluctuations, low D.O. and biomass replacement. The COD and nitrogen removal capabilities of the sludge and its settling properties are not affected by the addition of the pure culture.


Sign in / Sign up

Export Citation Format

Share Document