Extension of ENO and WENO schemes to one-dimensional sediment transport equations

2004 ◽  
Vol 33 (1) ◽  
pp. 31-56 ◽  
Author(s):  
N. Črnjarić-Žic ◽  
S. Vuković ◽  
L. Sopta
1997 ◽  
Vol 36 (8-9) ◽  
pp. 123-128 ◽  
Author(s):  
C. Nalluri ◽  
A. K. El-Zaemey ◽  
H. L. Chan

An appraisal of the existing sediment transport equations was made using May et al (1989) and Ackers (1991) sediment transport equations for the limit of deposition design criterion and with a deposit depth of 1% of the pipe diameter allowed in the sewers. The applicability of those equations for sewers with larger fixed bed deposit depth was assessed, the equations generally over-estimated the transport velocity. Modifications were made to enable the equations to apply to sewers with large fixed bed deposits present.


2021 ◽  
pp. 103-117
Author(s):  
Davor Kvočka

Sediment transport can have a negative impact on riparian environments, as it can lead to the deterioration of ecological diversity and increase flood risks. Sediment transport modelling is thus a key tool in river basin management and the development of river training structures. In this study, we examined the appropriateness of 1D modelling for total sediment transport loads using the Engelund–Hansen and Ackers–White transport equations for the Lower Danube River. The study evaluated the effect of sediment grading on the accuracy of 1D model results, the appropriateness of 1D sediment transport modelling within technical or engineering projects, and the appropriateness of the Engelund–Hansen and Ackers–White equations for estimating sediment yield in the area of the Lower Danube River. The model results have been compared to field measurements, with the accuracy of the modelling results being evaluated with statistical tests. The obtained results show: (i) the sediment grading does not have a significant impact on the 1D modelling results, (ii) 1D sediment transport modelling gives sufficiently accurate results for practical engineering use (e.g. the estimation of dredging activities), and (iii) the Engelund–Hansen equation is generally better for sediment transport modelling in the Lower Danube River.


Author(s):  
C. F. Castro-Bolinaga ◽  
E. R. Zavaleta ◽  
P. Diplas

Abstract. This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.


Author(s):  
Álvaro A. Aldama ◽  
Adalberto Vaca ◽  
Dunia González-Zeas ◽  
Xavier Coello-Rubio ◽  
Gustavo Luzuriaga

Sign in / Sign up

Export Citation Format

Share Document