Basic issues in the finite element simulation of extended end plate connections

1998 ◽  
Vol 69 (3) ◽  
pp. 361-382 ◽  
Author(s):  
O.S. Bursi ◽  
J.P. Jaspart
2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rongqian Yang ◽  
Xuejun Zhou

In order to study the mechanical behavior of bolted beam-column connections, the accuracy and applicability of the finite element model were firstly validated according to the published experiments on end-plate connections using ABAQUS. Then, in order to discuss the mechanical behavior of connections, three semirigid connections which are convenient for prefabricated construction, including top-and-seat angle connections with web and ear plate, extended end-plate connection, and T-stub connection, were examined using numerical simulation analysis to study and compare their capacity, hysteretic behavior, ductility, and degradation characteristics in detail. The results showed that the finite element models that were built could effectively simulate the load bearing behavior of bolted connections under both single-direction loading and cyclic loading. The three connections showed good load bearing capacity. The connectors significantly affected the energy dissipation capacity under load. The extended end-plate connection demonstrated the best performance in both mechanical behavior and manufacture and installation, so it would therefore be the preferred option.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3724 ◽  
Author(s):  
Liang Luo ◽  
Jiangui Qin ◽  
Dongzhuo Zhao ◽  
Zhiwei Wu

The extended end-plate connections provide excellent performance in resisting seismic loads in high-risk areas. Most scholars’ experiments and finite element studies on this type of joint are focused on the method of applying displacement loads on the beam tip, while the method of applying displacement on the column side has not been the subject of further study. However, the load transmission mechanism of this type of connection is not completely consistent in actual engineering, as the design concept of “strong column weak beam” does not apply to all joints. Therefore, in this paper, the lateral displacement of the applied column is used to simulate the seismic horizontal force to study the mechanical properties of the connection joints of the “weak column and strong beam” under the limit state of earthquake action. Based on the two internal columns (IC-EP1/2) and two edge columns (EC-EP1/2), the failure modes, strength, stiffness, moment–rotation curve, skeleton curve, ductility, and energy dissipation of this type of connection were studied. Experiment results indicated that this type of connection features semi-rigid and partial strength joints. The connection rotation angle of all specimens in the test exceeds 0.05 rad, which suggests it is an ideal seismic joints. Besides, the relationship between the thickness of the end-plate and the diameter of the bolt has a greater impact on the failure mode of the joint. The finite element (FE) analysis models were established for the above connection. The numerical model was validated against experimental results and showed acceptable consistency.


Sign in / Sign up

Export Citation Format

Share Document