scholarly journals Seismic Behavior of Extended End-Plate Connections Subjected to Cyclic Loading on the Top-Side of the Column

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3724 ◽  
Author(s):  
Liang Luo ◽  
Jiangui Qin ◽  
Dongzhuo Zhao ◽  
Zhiwei Wu

The extended end-plate connections provide excellent performance in resisting seismic loads in high-risk areas. Most scholars’ experiments and finite element studies on this type of joint are focused on the method of applying displacement loads on the beam tip, while the method of applying displacement on the column side has not been the subject of further study. However, the load transmission mechanism of this type of connection is not completely consistent in actual engineering, as the design concept of “strong column weak beam” does not apply to all joints. Therefore, in this paper, the lateral displacement of the applied column is used to simulate the seismic horizontal force to study the mechanical properties of the connection joints of the “weak column and strong beam” under the limit state of earthquake action. Based on the two internal columns (IC-EP1/2) and two edge columns (EC-EP1/2), the failure modes, strength, stiffness, moment–rotation curve, skeleton curve, ductility, and energy dissipation of this type of connection were studied. Experiment results indicated that this type of connection features semi-rigid and partial strength joints. The connection rotation angle of all specimens in the test exceeds 0.05 rad, which suggests it is an ideal seismic joints. Besides, the relationship between the thickness of the end-plate and the diameter of the bolt has a greater impact on the failure mode of the joint. The finite element (FE) analysis models were established for the above connection. The numerical model was validated against experimental results and showed acceptable consistency.

2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rongqian Yang ◽  
Xuejun Zhou

In order to study the mechanical behavior of bolted beam-column connections, the accuracy and applicability of the finite element model were firstly validated according to the published experiments on end-plate connections using ABAQUS. Then, in order to discuss the mechanical behavior of connections, three semirigid connections which are convenient for prefabricated construction, including top-and-seat angle connections with web and ear plate, extended end-plate connection, and T-stub connection, were examined using numerical simulation analysis to study and compare their capacity, hysteretic behavior, ductility, and degradation characteristics in detail. The results showed that the finite element models that were built could effectively simulate the load bearing behavior of bolted connections under both single-direction loading and cyclic loading. The three connections showed good load bearing capacity. The connectors significantly affected the energy dissipation capacity under load. The extended end-plate connection demonstrated the best performance in both mechanical behavior and manufacture and installation, so it would therefore be the preferred option.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Shizhe Chen ◽  
Jianrong Pan ◽  
Zhan Wang ◽  
Chao Zhou

Spatial joints with end-plate connections show significant spatial coupling effects under spatial loading. Mechanical behaviour and failure modes of these spatial joints differ from those of planar joints. This study involved experiments and finite element analyses with respect to planar joints with end-plate connections under static load. The numerical results agreed well with the experimental data, and this verified the adequacy of the finite element analyses. Then, finite element models of the spatial interior joint, exterior joint, and corner joint were established to analyse the difference between the mechanical behaviour of spatial joints and planar joints. The component method was used to analyse components contributing to the initial stiffness of spatial joints. An initial rotation stiffness calculation model of spatial joints was proposed based on the deformation of joints. The findings indicated that results of the calculation models were in good agreement with those of the finite element analyses, and this proved that the calculation model proposed in this study could act as a reference method.


2012 ◽  
Vol 193-194 ◽  
pp. 958-963
Author(s):  
Hong Wan ◽  
Yi Liang Peng ◽  
Jun Fen Yang ◽  
Ruo Hui Qiang

Full-scale of U-type and grooved-type slotted end plate (SEP) connections are tested to determine their failure modes and damage mechanisms under ultimate loading. Simulate on mechanical behaviors of U-type and grooved-type SEP connections under compression using finite element software ANSYS based on the experimental research. Obtain load-vertical displacement curves of the SEP connections, and compare with the experimental results to determine the validity of the model. On this basis, this paper provide the improved SEP connections, and contrast with the U-type and grooved-type SEP connections. The results indicate that finite element results are in good agreement with experimental data. Difference of the ultimate load between the test specimen and finite element model is less than 10%. The finite element can simulate mechanical behaviors of the SEP connections better. The ultimate bearing capacity of the UC-type SEP connected joints is significantly higher than the U-type and grooved-type, which shows the improved SEP Connections is reasonable and effective. SEP is the main factor of the U-type and grooved-type SEP Connections’ ultimate load, tube is controlling factor of the UC-type SEP connected joints.


1996 ◽  
Vol 23 (1) ◽  
pp. 277-286 ◽  
Author(s):  
S. Mourad ◽  
R. M. Korol ◽  
A. Ghobarah

Extended end-plate connections have been widely used in moment-resisting steel frames with W-shape columns, due to their sufficient stiffness and moment capacity. In addition, such connections are easy to install and permit good quality control. Extended end-plate connections can also be employed in moment-resisting frames with hollow structural section columns by using high strength blind bolts. These bolts have been developed for installation from one side only where the rear side of the connection is inaccessible. In this study, a quantitative procedure for detailing and designing beam extended end-plate connections for rectangular hollow structural section columns using high strength blind bolts is proposed. The design procedure is consistent with the design philosophy given in limit-state codes. The proposed design is based on the results obtained from an experimental program and an analytical study. Key words: design, end plate, connection, hollow section, blind bolts, steel, frame.


Author(s):  
Nicholas Haritos ◽  
Anil Hira ◽  
Priyan Mendis ◽  
Rob Heywood ◽  
Armando Giufre

VicRoads, the road authority for the state of Victoria, Australia, has been undertaking extensive research into the load capacity and performance of cast-in-place reinforced concrete flat slab bridges. One of the key objectives of this research is the development of analytical tools that can be used to better determine the performance of these bridges under loadings to the elastic limit and subsequently to failure. The 59-year-old Barr Creek Bridge, a flat slab bridge of four short continuous spans over column piers, was made available to VicRoads in aid of this research. The static testing program executed on this bridge was therefore aimed at providing a comprehensive set of measurements of its response to serviceability level loadings and beyond. This test program was preceded by the performance of a dynamic test (a simplified experimental modal analysis using vehicular excitation) to establish basic structural properties of the bridge (effective flexural rigidity, EI) and the influence of the abutment supports from identification of its dynamic modal characteristics. The dynamic test results enabled a reliably tuned finite element model of the bridge in its in-service condition to be produced for use in conjunction with the static testing program. The results of the static testing program compared well with finite element modeling predictions in both the elastic range (serviceability loadings) and the nonlinear range (load levels taken to incipient collapse). Observed collapse failure modes and corresponding collapse load levels were also found to be predicted well using yield line theory.


2018 ◽  
Vol 763 ◽  
pp. 818-825 ◽  
Author(s):  
Roberto Tartaglia ◽  
Mario D'Aniello ◽  
Gian Andrea Rassati ◽  
James A. Swanson ◽  
Raffaele Landolfo

Extended stiffened end-plate connections are widely used in seismic area due to their good performance in terms of both resistance and ductility. The most of existing studies focused on the all-steel behavior of these joints, disregarding the composite action of the concrete slab that is generally disconnected. However, the presence of the concrete slab can have beneficial effects on the structural stiffness for both gravity and lateral loads. Hence, most of the building frames are usually designed considering steel-concrete composite solution. However, the slab can strongly influence the hierarchy between beam and column and the ductility of the joint. In this paper the influence of composite deck on the response of extended stiffened end-plate joins has been investigated by means of finite element analyses (FEAs). In particular, the following details have been investigated: (i) all steel joints without slab; (ii) steel joint with disconnected slab; (iii) composite joint.


Sign in / Sign up

Export Citation Format

Share Document