Bacterial Na+- or H+-coupled ATP Synthases Operating at Low Electrochemical Potential

Author(s):  
Peter Dimroth ◽  
Gregory M. Cook
2021 ◽  
Author(s):  
Thomas Heitkamp ◽  
Michael Börsch

ABSTRACTFoF1-ATP synthases are the ubiquitous membrane enzymes which catalyze ATP synthesis or ATP hydrolysis in reverse, respectively. Enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, by mechanical inhibitory mechanisms, but also by the electrochemical potential of protons across the membrane. By utilizing an Anti- Brownian electrokinetic trap (ABEL trap), single-molecule Förster resonance energy transfer (smFRET)-based subunit rotation monitoring was prolonged from milliseconds to seconds. The extended observation times for single proteoliposomes in solution allowed to observe fluctuating rotation rates of individual enzymes and to map the broad distributions of ATP-dependent catalytic rates in FoF1-ATP synthase. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores and uncouplers the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second, i.e. much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 fragments without coupling to the membrane-embedded Fo domain of the enzyme.


Author(s):  
K. Ando ◽  
E. Saitoh

This chapter introduces the concept of incoherent spin current. A diffusive spin current can be driven by spatial inhomogeneous spin density. Such spin flow is formulated using the spin diffusion equation with spin-dependent electrochemical potential. The chapter also proposes a solution to the problem known as the conductivity mismatch problem of spin injection into a semiconductor. A way to overcome the problem is by using a ferromagnetic semiconductor as a spin source; another is to insert a spin-dependent interface resistance at a metal–semiconductor interface.


Author(s):  
Shin Nakamura ◽  
Matteo Capone ◽  
Giuseppe Mattioli ◽  
Leonardo Guidoni

Water-oxidizing metal-(hydr)oxo catalyst films can be generally deposited and activated by applying a positive electrochemical potential to suitable starting aqueous solutions. Here, we used ab initio simulations based on density...


2021 ◽  
Vol 22 (7) ◽  
pp. 3572
Author(s):  
Jeff Abramson ◽  
Ernest M. Wright

Active transport of sugars into bacteria occurs through symporters driven by ion gradients. LacY is the most well-studied proton sugar symporter, whereas vSGLT is the most characterized sodium sugar symporter. These are members of the major facilitator (MFS) and the amino acid-Polyamine organocation (APS) transporter superfamilies. While there is no structural homology between these transporters, they operate by a similar mechanism. They are nano-machines driven by their respective ion electrochemical potential gradients across the membrane. LacY has 12 transmembrane helices (TMs) organized in two 6-TM bundles, each containing two 3-helix TM repeats. vSGLT has a core structure of 10 TM helices organized in two inverted repeats (TM 1–5 and TM 6–10). In each case, a single sugar is bound in a central cavity and sugar selectivity is determined by hydrogen- and hydrophobic- bonding with side chains in the binding site. In vSGLT, the sodium-binding site is formed through coordination with carbonyl- and hydroxyl-oxygens from neighboring side chains, whereas in LacY the proton (H3O+) site is thought to be a single glutamate residue (Glu325). The remaining challenge for both transporters is to determine how ion electrochemical potential gradients drive uphill sugar transport.


2019 ◽  
Vol 7 (41) ◽  
pp. 23679-23726 ◽  
Author(s):  
Manoj K. Jangid ◽  
Amartya Mukhopadhyay

Monitoring stress development in electrodes in-situ provides a host of real-time information on electro-chemo-mechanical aspects as functions of SOC and electrochemical potential.


Sign in / Sign up

Export Citation Format

Share Document