Intracellular Ca2+ Messenger System in Plants

Author(s):  
Shoshi Muto
Keyword(s):  
1995 ◽  
Vol 67 ◽  
pp. 146
Author(s):  
Takavuki Yuasa ◽  
Junichi Eguchi ◽  
Mitsuo Eeawa ◽  
Ken-Ichi Saito

2005 ◽  
Vol 30 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Ales Neuwirth ◽  
Dalibor KodriK ◽  
Heiner Birkenbeil ◽  
Frantisek Sehnal

1994 ◽  
Vol 197 (1) ◽  
pp. 377-391 ◽  
Author(s):  
K R Prier ◽  
O H Beckman ◽  
N J Tublitz

The central nervous system of the moth Manduca sexta contains a group of myoregulatory neuropeptides, the CAPs (Cardioacceleratory Peptides), which cause a physiologically important, dose-dependent increase in heart rate during wing inflation and flight in adult moths. We report here that the response of the adult heart to a subset of the CAPs, the CAP2S, is potentiated nearly twofold in the chronic presence of subthreshold levels of the biogenic amine octopamine or near-threshold levels of the biogenic amine serotonin. Subthreshold levels of the CAP2S fail to alter the response of the heart to octopamine. We have begun to investigate the molecular mechanisms underlying this potentiation. Previous work on the adult heart has shown that the CAP2s act through an inositol-1,4,5-trisphosphate second-messenger system. Here, we demonstrate that the cardioexcitatory effects of the two amines, in contrast to those of the CAP2S, are both mediated by cyclic AMP. Application to the heart of either 10(-5) moll-1 octopamine or 10(-6)moll-1 serotonin elicits a threefold increase in intracellular cyclic AMP levels. The CAP2S have no effect on cyclic AMP levels in the heart. These results illustrate a mechanism by which the effectiveness of a neurohormone can be increased with minimal cost to the animal. In Manduca sexta, subthreshold levels of octopamine are found in the haemolymph during wing inflation and flight. Thus, it is possible that octopamine up-regulates the effects of CAP2 via a cyclic-AMP-dependent mechanism during these activities.


1995 ◽  
Vol 268 (5) ◽  
pp. C1252-C1258 ◽  
Author(s):  
T. A. Pressley ◽  
S. C. Higham ◽  
L. A. Joson ◽  
D. W. Mercer

Thyroid-stimulating hormone (TSH; thyrotropin) produces a pleiotropic response in the thyroid gland, accelerating nearly every aspect of metabolic turnover within the follicular epithelia. We examined the effects of TSH on expression of Na(+)-K(+)-ATPase in FRTL-5 cells, a cell line derived from rat thyroid. TSH (10 mU/ml) produced a nearly twofold increase in abundance of the mRNA encoding the catalytic alpha 1-subunit within 6 h of treatment. With the four mRNAs encoding the beta 1-subunit, TSH produced a striking increase in abundance, but this regulation was discoordinate, and some species increased more than others. Similar increases in mRNA abundance were elicited by activators of the adenosine 3',5'-cyclic monophosphate second messenger system. In contrast to the alpha 1- and beta 1-mRNAs, the abundance of the mRNA encoding the beta 2-subunit was unchanged with TSH after 6 h, indicating that the effects of thyrotropin were not universal or indiscriminate. Thyrotropin also caused a 76% increase in Na(+)-K(+)-ATPase activity and a 46% increase in pump-mediated transport after 48 h. These studies suggest that the changes in metabolic turnover initiated by TSH during hormone synthesis include upregulation of the N(+)-K+ pump.


Sign in / Sign up

Export Citation Format

Share Document