Use of Microdialysis to Study Interstitial Nitric Oxide and Other Reactive Oxygen and Nitrogen Species in Skeletal Muscle

Author(s):  
Malcolm J. Jackson
2007 ◽  
Vol 102 (4) ◽  
pp. 1664-1670 ◽  
Author(s):  
Malcolm J. Jackson ◽  
Deborah Pye ◽  
Jesus Palomero

Skeletal muscle has been recognized as a potential source for generation of reactive oxygen and nitrogen species for more than 20 years. Initial investigations concentrated on the potential role of mitochondria as a major source for generation of superoxide as a “by-product” of normal oxidative metabolism, but recent studies have identified multiple subcellular sites, where superoxide or nitric oxide are generated in regulated and controlled systems in response to cellular stimuli. Full evaluation of the factors regulating these processes and the functions of the reactive oxygen species generated are important in understanding the redox biology of skeletal muscle.


Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


Author(s):  
A. Ye. Demkovych

Introduction. Activation of lipid peroxidation is one of the trigger mechanisms of periodontium injury, which is primary caused by cellular damage. Reactive oxygen and nitrogen species (RONS) are able to cause damage to a cell as well as final products of lipid peroxidation, including unsaturated aldehydes and other metabolites. Objective. The aim of the research was to determine the role of RONS and accumulation of lipid peroxidation derivatives in initial development and formation of chronical inflammatory process in periodontium. Methods. Experimental periodontitis was modeled in animals by injection of complex mixtures of microorganisms diluted in egg protein into periodontal tissues. The results of biochemical studies of free radical processes activity in blood serum were evaluated by content of diene, triene conjugates, TBA-active products and total quantity of metabolites of nitric oxide (NO2–+NO3–), which were determined on the 7th, 14th and 30th days of the experiment. Results. Generation of active forms of oxygen is more influential, providing longevity of inflammatory process. This pays attention to typical dynamics of changes in active processes of lipid peroxidation in the development and course of experimental periodontitis. The study of inflammatory process with a bacterial-immune component in the rats’ periodontal complex proved accumulation of lipid peroxidation and nitric oxide metabolites in blood serum.Conclusions. The preservation of increased lipid peroxidation and nitric oxide metabolites in blood serum of the experimental animals with acute periodontitis conduce enhance of alteration and delayed healing that result in its sequel into chronical periodontitis.


2020 ◽  
Vol 41 (10) ◽  
pp. 633-645
Author(s):  
Michalis G. Nikolaidis ◽  
Nikos V. Margaritelis ◽  
Antonios Matsakas

AbstractBiology is rich in claims that reactive oxygen and nitrogen species are involved in every biological process and disease. However, many quantitative aspects of redox biology remain elusive. The important quantitative parameters you need to address the feasibility of redox reactions in vivo are: rate of formation and consumption of a reactive oxygen and nitrogen species, half-life, diffusibility and membrane permeability. In the first part, we explain the basic chemical kinetics concepts and algebraic equations required to perform “street fighting” quantitative analysis. In the second part, we provide key numbers to help thinking about sizes, concentrations, rates and other important quantities that describe the major oxidants (superoxide, hydrogen peroxide, nitric oxide) and antioxidants (vitamin C, vitamin E, glutathione). In the third part, we present the quantitative effect of exercise on superoxide, hydrogen peroxide and nitric oxide concentration in mitochondria and whole muscle and calculate how much hydrogen peroxide concentration needs to increase to transduce signalling. By taking into consideration the quantitative aspects of redox biology we can: i) refine the broad understanding of this research area, ii) design better future studies and facilitate comparisons among studies, and iii) define more efficiently the “borders” between cellular signaling and stress.


2010 ◽  
Vol 77A (11) ◽  
pp. 1038-1048 ◽  
Author(s):  
Sachin Kumar ◽  
Satyananda Patel ◽  
Anupam Jyoti ◽  
Ravi Shankar Keshari ◽  
Anupam Verma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document