scholarly journals Genetic Analyses of the Role of RCE1 in RAS Membrane Association and Transformation

Author(s):  
Martin O. Bergo ◽  
Annika M. Wahlstrom ◽  
Loren G. Fong ◽  
Stephen G. Young
2000 ◽  
Vol 149 (1) ◽  
pp. 95-110 ◽  
Author(s):  
N. Barry Elkind ◽  
Christiane Walch-Solimena ◽  
Peter J. Novick

Sec2p is required for the polarized transport of secretory vesicles in S. cerevisiae. The Sec2p NH2 terminus encodes an exchange factor for the Rab protein Sec4p. Sec2p associates with vesicles and in Sec2p COOH-terminal mutants Sec4p and vesicles no longer accumulate at bud tips. Thus, the Sec2p COOH terminus functions in targeting vesicles, however, the mechanism of function is unknown. We found comparable exchange activity for truncated and full-length Sec2 proteins, implying that the COOH terminus does not alter the exchange rate. Full-length Sec2-GFP, similar to Sec4p, concentrates at bud tips. A COOH-terminal 58–amino acid domain is necessary but not sufficient for localization. Sec2p localization depends on actin, Myo2p and Sec1p, Sec6p, and Sec9p function. Full-length, but not COOH-terminally truncated Sec2 proteins are enriched on membranes. Membrane association of full-length Sec2p is reduced in sec6-4 and sec9-4 backgrounds at 37°C but unaffected at 25°C. Taken together, these data correlate loss of localization of Sec2 proteins with reduced membrane association. In addition, Sec2p membrane attachment is substantially Sec4p independent, supporting the notion that Sec2p interacts with membranes via an unidentified Sec2p receptor, which would increase the accessibility of Sec2p exchange activity for Sec4p.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 5163-5170 ◽  
Author(s):  
W. Edward Visser ◽  
Nancy J. Philp ◽  
Thamar B. van Dijk ◽  
Wim Klootwijk ◽  
Edith C. H. Friesema ◽  
...  

The human monocarboxylate transporter 8 (hMCT8) protein mediates transport of thyroid hormone across the plasma membrane. Association of hMCT8 mutations with severe psychomotor retardation and disturbed thyroid hormone levels has established its physiological relevance, but little is still known about the basic properties of hMCT8. In this study we present evidence that hMCT8 does not form heterodimers with the ancillary proteins basigin, embigin, or neuroplastin, unlike other MCTs. In contrast, it is suggested that MCT8 exists as monomer and homodimer in transiently and stably transfected cells. Apparently hMCT8 forms stable dimers because the complex is resistant to denaturing conditions and dithiothreitol. Cotransfection of wild-type hMCT8 with a mutant lacking amino acids 267–360 resulted in formation of homo-and heterodimers of the variants, indicating that transmembrane domains 4–6 are not involved in the dimerization process. Furthermore, we explored the structural and functional role of the 10 Cys residues in hMCT8. All possible Cys>Ala mutants did not behave differently from wild-type hMCT8 in protein expression, cross-linking experiments with HgCl2 and transport function. Our findings indicate that individual Cys residues are not important for the function of hMCT8 or suggest that hMCT8 has other yet-undiscovered functions in which cysteines play an essential role.


2013 ◽  
Vol 33 (18) ◽  
pp. 3675-3688 ◽  
Author(s):  
A. I. Fogel ◽  
B. J. Dlouhy ◽  
C. Wang ◽  
S.-W. Ryu ◽  
A. Neutzner ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Priyanka Bansal ◽  
Anuj Tripathi ◽  
Vandana Thakur ◽  
Asif Mohmmed ◽  
Pushkar Sharma

ABSTRACT Mechanisms by which 3′-phosphorylated phosphoinositides (3′-PIPs) regulate the development of apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are poorly understood. The catabolic process of autophagy, which is dependent on autophagy-related proteins (ATGs), is one of the major targets of 3′-PIPs in yeast and mammals. In the present study, we identified autophagy-related protein ATG18 as an effector of 3′-PIPs in these parasites. P. falciparum ATG18 (PfATG18) and T. gondii ATG18 (TgATG18) interact with 3′-PIPs but exhibited differences in their specificity of interaction with the ligand PIP. The conditional knockdown of T. gondii or P. falciparum ATG18 (Tg/PfATG18) impaired replication of parasites and resulted in their delayed death. Intriguingly, ATG18 depletion resulted in the loss of the apicomplexan parasite-specific nonphotosynthetic plastid-like organelle apicoplast, which harbors the machinery for biosynthesis of key metabolites, and the interaction of ATG18 to phosphatidylinositol 3-phosphate (PI3P) was critical for apicoplast inheritance. Furthermore, ATG18 regulates membrane association and apicoplast localization of ATG8. These findings provide insights into a novel noncanonical role of ATG18 in apicoplast inheritance. This function of ATG18 in organelle biogenesis is unprecedented in any organism and may be conserved across most apicomplexan parasites. IMPORTANCE Typically, autophagy is a catabolic process utilized by cells for their survival upon encountering nutrient-limiting conditions. The autophagy machinery is very tightly regulated, and autophagy-related genes (ATGs) play a pivotal role in this process. In the present study, we report a novel noncanonical function of autophagy-related protein ATG18 in inheritance of the nonphotosynthetic plastid-like organelle apicoplast in apicomplexan parasites Plasmodium and Toxoplasma. ATG18 depletion in these parasites resulted in “delayed death,” which was the result of loss of apicoplast and impaired parasite division. Pf/TgATG18 interact with 3′-phosphorylated PIPs, which guide their cellular localization in the parasite, which is essential for their function. IMPORTANCE Typically, autophagy is a catabolic process utilized by cells for their survival upon encountering nutrient-limiting conditions. The autophagy machinery is very tightly regulated, and autophagy-related genes (ATGs) play a pivotal role in this process. In the present study, we report a novel noncanonical function of autophagy-related protein ATG18 in inheritance of the nonphotosynthetic plastid-like organelle apicoplast in apicomplexan parasites Plasmodium and Toxoplasma. ATG18 depletion in these parasites resulted in “delayed death,” which was the result of loss of apicoplast and impaired parasite division. Pf/TgATG18 interact with 3′-phosphorylated PIPs, which guide their cellular localization in the parasite, which is essential for their function.


2009 ◽  
Vol 184 (3) ◽  
pp. 451-462 ◽  
Author(s):  
Jian-Jiang Hao ◽  
Yin Liu ◽  
Michael Kruhlak ◽  
Karen E. Debell ◽  
Barbara L. Rellahan ◽  
...  

Mechanisms controlling the disassembly of ezrin/radixin/moesin (ERM) proteins, which link the cytoskeleton to the plasma membrane, are incompletely understood. In lymphocytes, chemokine (e.g., SDF-1) stimulation inactivates ERM proteins, causing their release from the plasma membrane and dephosphorylation. SDF-1–mediated inactivation of ERM proteins is blocked by phospholipase C (PLC) inhibitors. Conversely, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) levels by activation of PLC, expression of active PLC mutants, or acute targeting of phosphoinositide 5-phosphatase to the plasma membrane promotes release and dephosphorylation of moesin and ezrin. Although expression of phosphomimetic moesin (T558D) or ezrin (T567D) mutants enhances membrane association, activation of PLC still relocalizes them to the cytosol. Similarly, in vitro binding of ERM proteins to the cytoplasmic tail of CD44 is also dependent on PIP2. These results demonstrate a new role of PLCs in rapid cytoskeletal remodeling and an additional key role of PIP2 in ERM protein biology, namely hydrolysis-mediated ERM inactivation.


Sign in / Sign up

Export Citation Format

Share Document