Statistical comparison of global significant wave heights from Topex and ERS-1 altimeter and from operational wave model WAM

1998 ◽  
Vol 23 (5-6) ◽  
pp. 581-585 ◽  
Author(s):  
C. Staabs ◽  
E. Bauer
2021 ◽  
Author(s):  
Jan-Victor Björkqvist ◽  
Jani Särkkä ◽  
Hedi Kanarik ◽  
Laura Tuomi

<p>Wave climate change in the Gulf of Bothnia in 2030–2059 was investigated using regional wave climate projections. For the simulations we used wave model WAM. As the atmospheric forcing for the wave model we had three global climate scenarios (HADGEM2-ES, MPI-ESM, EC-EARTH) downscaled with RCA4-NEMO regional model. The ice concentration for the wave model was obtained from NEMO ocean model simulations using the same atmospheric forcing. We used both RCP4.5 and RCP8.5 greenhouse gas scenarios. The spatial resolution of the simulation data was 1.8 km, enabling detailed analyses of the wave properties near the coast. From the simulation data we calculated statistics and return levels of significant wave heights using extreme value analysis, and assessed the projected changes in the wave climate in the Gulf of Bothnia. The projected increase in the significant wave heights is mainly due to the decreasing ice cover, especially in the Bothnian Bay. Projected changes in the most prevalent wind direction impacts the spatial pattern of the wave heights in the Bothnian Sea.</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 409 ◽  
Author(s):  
Ole Roggenbuck ◽  
Jörg Reinking ◽  
Tomke Lambertus

Currently, GNSS reflectometry based on the signal-to-noise ratio (SNR) has become an established tool in ocean remote sensing. Here, the distance between an antenna and the water surface is measured by analyzing the oscillation of the SNR observation. Due to the antenna gain pattern, this oscillation is more pronounced for satellite signals coming from low elevation angles. Additionally, the sea surface roughness is related to the attenuation of the SNR oscillation. Hence, the significant wave height (SWH) can be estimated by analyzing the SNR signal. In this work, a method is presented with which the SWH can be calculated from the attenuation’s damping coefficient of the SNR observations measured with surface-based receivers. The method’s usability is demonstrated using data from a static antenna operated in the German Bight and with data from a ship-based antenna. The estimated SWH values were validated against numerical wave model data. For both experiments, a high correlation was found.


2016 ◽  
Vol 31 (6) ◽  
pp. 2035-2045 ◽  
Author(s):  
Charles R. Sampson ◽  
James A. Hansen ◽  
Paul A. Wittmann ◽  
John A. Knaff ◽  
Andrea Schumacher

Abstract Development of a 12-ft-seas significant wave height ensemble consistent with the official tropical cyclone intensity, track, and wind structure forecasts and their errors from the operational U.S. tropical cyclone forecast centers is described. To generate the significant wave height ensemble, a Monte Carlo wind speed probability algorithm that produces forecast ensemble members is used. These forecast ensemble members, each created from the official forecast and randomly sampled errors from historical official forecast errors, are then created immediately after the official forecast is completed. Of 1000 forecast ensemble members produced by the wind speed algorithm, 128 of them are selected and processed to produce wind input for an ocean surface wave model. The wave model is then run once per realization to produce 128 possible forecasts of significant wave height. Probabilities of significant wave height at critical thresholds can then be computed from the ocean surface wave model–generated significant wave heights. Evaluations of the ensemble are provided in terms of maximum significant wave height and radius of 12-ft significant wave height—two parameters of interest to both U.S. Navy meteorologists and U.S. Navy operators. Ensemble mean errors and biases of maximum significant wave height and radius of 12-ft significant wave height are found to be similar to those of a deterministic version of the same algorithm. Ensemble spreads capture most verifying maximum and radii of 12-ft significant wave heights.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tzu-Yin Chang ◽  
Hongey Chen ◽  
Shih-Chun Hsiao ◽  
Han-Lun Wu ◽  
Wei-Bo Chen

The ocean surface waves during Super Typhoons Maria (2018), Lekima (2019), and Meranti (2016) were reproduced using hybrid typhoon winds and a fully coupled wave-tide-circulation modeling system (SCHISM-WWM-III). The hindcasted significant wave heights are in good agreement with the along-track significant wave heights measured by the altimeters aboard the SARAL (Satellite with ARgos and ALtiKa) and Jason-2 satellites. Two numerical experiments pairing Super Typhoons Maria (2018) and Meranti (2016) and Super Typhoons Lekima (2019) and Meranti (2016) were conducted to analyze the storm wave characteristics of binary and individual typhoons. Four points located near the tracks of the three super typhoons were selected to elucidate the effects of binary typhoons on ocean surface waves. The comparisons indicate that binary typhoons not only cause an increase in the significant wave height simulations at four selected pints but also result in increases in the one-dimensional wave energy and two-dimensional directional wave spectra. Our results also reveal that the effects of binary typhoons on ocean surface waves are more significant at the periphery of the typhoon than near the center of the typhoon. The interactions between waves generated by Super Typhoons Maria (2018) and Meranti (2016) or Super Typhoons Lekima (2019) and Meranti (2016) might be diminished by Taiwan Island even if the separation distance between two typhoons is <700 km.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Hanah Khoirunnisa ◽  
Mardi Wibowo ◽  
Wahyu Hendriyono ◽  
Khusnul Setia Wardani

The flight test of N219 Amphibious aircraft will be targeted in 2003/2024. For flight tests, these aircraft need a seaplane dock. One of the potential locations for the seaplane dock is Panjang Island at Seribu Islands. This study aims to know the characteristic of hydrodynamic and wave conditions and to determine whether Panjang Island is suitable for the seaplane dock. This study uses a modeling method with MIKE 21 FM HD-SW module and MIKE 21 Boussinesq Wave (BW)  module. The bathymetry data were obtained from the Indonesian Navy Hydrographic and Oceanographic Center (Pushidrosal), tide data is generated from Tide Model Driver (TMD), wave and wind data from ECMWF. The result of surface elevation validation between hydrodynamic modeling and TMD is 92%. During the west monsoon and spring conditions, the difference in the largest and lowest current velocity is quite large (0.018-0.199 m/s), on the other hand, when the tides are in neap conditions (0.008-0.144 m/s). Meanwhile, during the east monsoon and spring conditions, the difference in the largest and lowest current velocities is quite large (0.02-0.193 m/s), on the other hand, when the tides are in neap conditions (0.008-0.146 m/s). The maximum wave height resulting from the 50-year return period waveform modeling between 1.139 - 1.474 m. Meanwhile, the significant wave heights between 0.679 - 0.741 with a significant wave period of 13.45 seconds. In general, the current and wave conditions of the two locations are suitable for the construction of the seaplane dock, except that the dominant wave heights are still above the requirements.


2020 ◽  
Vol 12 (22) ◽  
pp. 3689
Author(s):  
Iain Fairley ◽  
Jose Horrillo-Caraballo ◽  
Ian Masters ◽  
Harshinie Karunarathna ◽  
Dominic E. Reeve

Coastal dunes have global importance as ecological habitats, recreational areas, and vital natural coastal protection. Dunes evolve due to variations in the supply and removal of sediment via both wind and waves, and on stabilization through vegetation colonization and growth. One aspect of dune evolution that is poorly understood is the longshore variation in dune response to morphodynamic forcing, which can occur over small spatial scales. In this paper, a fixed wing unmanned aerial vehicle (UAV), is used to measure the longshore variation in evolution of a dune system in a megatidal environment. Dune sections to the east and west of the study site are prograding whereas the central portion is static or eroding. The measured variation in dune response is compared to mesoscale intertidal bar migration and short-term measurements of longshore variation in wave characteristics during two storms. Intertidal sand bar migration is measured using satellite imagery: crescentic intertidal bars are present in front of the accreting portion of the beach to the west and migrate onshore at a rate of 0.1–0.2 m/day; episodically the eastern end of the bar detaches from the main bar and migrates eastward to attach near the eastern end of the study area; bypassing the central eroding section. Statistically significant longshore variation in intertidal wave heights were measured using beachface mounted pressure transducers: the largest significant wave heights are found in front of the dune section suffering erosion. Spectral differences were noted with more narrow-banded spectra in this area but differences are not statistically significant. These observations demonstrate the importance of three-dimensionality in intertidal beach morphology on longshore variation in dune evolution; both through longshore variation in onshore sediment supply and through causing longshore variation in near-dune significant wave heights.


Sign in / Sign up

Export Citation Format

Share Document