Chapter 12 Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response

1986 ◽  
pp. 169-190 ◽  
Author(s):  
L.W. Swanson ◽  
P.E. Sawchenko ◽  
R.W. Lind
2019 ◽  
Vol 20 (3) ◽  
pp. 489 ◽  
Author(s):  
Carla Cioni ◽  
Elisa Angiulli ◽  
Mattia Toni

The involvement of nitric oxide (NO) in the modulation of teleost osmoresponsive circuits is suggested by the facts that NO synthase enzymes are expressed in the neurosecretory systems and may be regulated by osmotic stimuli. The present paper is an overview on the research suggesting a role for NO in the central modulation of hormone release in the hypothalamo-neurohypophysial and the caudal neurosecretory systems of teleosts during the osmotic stress response. Active NOS enzymes are constitutively expressed by the magnocellular and parvocellular hypophysiotropic neurons and the caudal neurosecretory neurons of teleosts. Moreover, their expression may be regulated in response to the osmotic challenge. Available data suggests that the regulatory role of NO appeared early during vertebrate phylogeny and the neuroendocrine modulation by NO is conservative. Nonetheless, NO seems to have opposite effects in fish compared to mammals. Indeed, NO exerts excitatory effects on the electrical activity of the caudal neurosecretory neurons, influencing the amount of peptides released from the urophysis, while it inhibits hormone release from the magnocellular neurons in mammals.


2014 ◽  
Vol 38 ◽  
pp. 157-167 ◽  
Author(s):  
Larisa ILIJIN ◽  
Milena VLAHOVIĆ ◽  
Vesna PERIĆ MATARUGA ◽  
Ivana KMETIČ ◽  
Anja GAVRILOVIĆ ◽  
...  

Author(s):  
Grazia Tagliafierro ◽  
Cristiana Crosa ◽  
Marco Canepa ◽  
Tiziano Zanin

Barnacles are very specialized Crustacea, with strongly reduced head and abdomen. Their nervous system is rather simple: the brain or supra-oesophageal ganglion (SG) is a small bilobed structure and the toracic ganglia are fused into a single ventral mass, the suboesophageal ganglion (VG). Neurosecretion was shown in barnacle nervous system by histochemical methods and numerous putative hormonal substances were extracted and tested. Recently six different types of dense-core granules were visualized in the median ocellar nerve of Balanus hameri and serotonin and FMRF-amide like substances were immunocytochemically detected in the nervous system of Balanus amphitrite. The aim of the present work is to localize and characterize at ultrastructural level, neurosecretory neuron cell bodies in the VG of Balanus amphitrite.Specimens of Balanus amphitrite were collected in the port of Genova. The central nervous system were Karnovsky fixed, osmium postfixed, ethanol dehydrated and Durcupan ACM embedded. Ultrathin sections were stained with uranyl acetate and lead citrate. Ultrastructural observations were made on a Philips M 202 and Zeiss 109 T electron microscopy.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Sign in / Sign up

Export Citation Format

Share Document