Chapter 24 Muscle-derived trophic factors influencing cholinergic neurons in vitro and in vivo

Author(s):  
Stanley H. Appel ◽  
James L. McManaman ◽  
Ron Oppenheim ◽  
Lanny Haverkamp ◽  
Kenneth Vaca
2000 ◽  
Vol 279 (4) ◽  
pp. H2006-H2012 ◽  
Author(s):  
Kazuhide Ayajiki ◽  
Toshiki Tanaka ◽  
Tomio Okamura ◽  
Noboru Toda

In anesthetized monkeys, electrical stimulation (ES) of the pterygopalatine or geniculate ganglion dilated the ipsilateral ophthalmic artery (OA). The induced vasodilatation was unaffected by phentolamine but potentiated by atropine. Intravenous N G-nitro-l-arginine (l-NNA) abolished the response, which was restored byl-arginine. Hexamethonium-abolished vasodilator responses induced solely by geniculate ganglionic stimulation. Thel-NNA constricted OA; l-arginine reversed the effect. Destruction of the pterygopalatine ganglion constricted the ipsilateral artery. Helical strips of OA isolated under deep anesthesia from monkeys, denuded of endothelium, responded to transmural ES with relaxations, which were abolished by tetrodotoxin and l-NNA but were potentiated by atropine. It is concluded that neurogenic vasodilatation of monkey OA is mediated by nerve-derived nitric oxide (NO), and the nerve is originated from the ipsilateral pterygopalatine ganglion that is innervated by cholinergic neurons from the brain stem via the geniculate ganglion. The OA appears to be dilated by mediation of NO continuously liberated from nerves that receive tonic discharges from the vasomotor center. Acetylcholine liberated from postganglionic cholinergic nerves would impair the release of neurogenic NO.


2019 ◽  
Vol 116 (15) ◽  
pp. 7483-7492 ◽  
Author(s):  
Amanda Marchini ◽  
Andrea Raspa ◽  
Raffaele Pugliese ◽  
Marina Abd El Malek ◽  
Valentina Pastori ◽  
...  

Three-dimensional cell cultures are leading the way to the fabrication of tissue-like constructs useful to developmental biology and pharmaceutical screenings. However, their reproducibility and translational potential have been limited by biomaterial and culture media compositions, as well as cellular sources. We developed a construct comprising synthetic multifunctionalized hydrogels, serum-free media, and densely seeded good manufacturing practice protocol-grade human neural stem cells (hNSC). We tracked hNSC proliferation, differentiation, and maturation into GABAergic, glutamatergic, and cholinergic neurons, showing entangled electrically active neural networks. The neuroregenerative potential of the “engineered tissue” was assessed in spinal cord injuries, where hNSC-derived progenitors and predifferentiated hNSC progeny, embedded in multifunctionalized hydrogels, were implanted. All implants decreased astrogliosis and lowered the immune response, but scaffolds with predifferentiated hNSCs showed higher percentages of neuronal markers, better hNSC engraftment, and improved behavioral recovery. Our hNSC-construct enables the formation of 3D functional neuronal networks in vitro, allowing novel strategies for hNSC therapies in vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Leah A. Marquez-Curtis ◽  
Anna Janowska-Wieczorek

Mesenchymal stromal cells (MSCs) are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-)1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.


1993 ◽  
Vol 609 (1-2) ◽  
pp. 29-35 ◽  
Author(s):  
Yoshihiro Konishi ◽  
De-Hua Chui ◽  
Hideki Hirose ◽  
Tatsuhide Kunishita ◽  
Takeshi Tabira

2019 ◽  
Vol 20 (18) ◽  
pp. 4486 ◽  
Author(s):  
Sabrina Petralla ◽  
Luis Emiliano Peña-Altamira ◽  
Eleonora Poeta ◽  
Francesca Massenzio ◽  
Marco Virgili ◽  
...  

Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate–aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor βs (TGFβs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency.


Sign in / Sign up

Export Citation Format

Share Document