scholarly journals Structure of the Neurospora SET Domain Protein DIM-5, a Histone H3 Lysine Methyltransferase

Cell ◽  
2002 ◽  
Vol 111 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Xing Zhang ◽  
Hisashi Tamaru ◽  
Seema I. Khan ◽  
John R. Horton ◽  
Lisa J. Keefe ◽  
...  
Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 726
Author(s):  
Philipp Rathert

NSD3 is one of six H3K36-specific lysine methyltransferases in metazoans, and the methylation of H3K36 is associated with active transcription. NSD3 is a member of the nuclear receptor-binding SET domain (NSD) family of histone methyltransferases together with NSD1 and NSD2, which generate mono- and dimethylated lysine on histone H3. NSD3 is mutated and hyperactive in some human cancers, but the biochemical mechanisms underlying such dysregulation are barely understood. In this review, the current knowledge of NSD3 is systematically reviewed. Finally, the molecular and functional characteristics of NSD3 in different tumor types according to the current research are summarized.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 596 ◽  
Author(s):  
Kei Fukuda ◽  
Yoichi Shinkai

SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.


Chromosoma ◽  
2021 ◽  
Author(s):  
Philipp A. Steffen ◽  
Christina Altmutter ◽  
Eva Dworschak ◽  
Sini Junttila ◽  
Attila Gyenesei ◽  
...  

AbstractThe Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila. Quantitative live imaging demonstrates that ASH1 requires AT hooks and the BAH domain but not the SET domain for full chromatin binding in metaphase, and that none of these domains are essential for interphase binding. Genetic experiments show that disruptions of the AT hooks and the BAH domain together, but not deletion of the SET domain alone, are lethal. Transcriptional profiling demonstrates that intact ASH1 AT hooks and the BAH domain are required to maintain expression levels of a specific set of genes, including several involved in cell identity and survival. This study identifies in vivo roles for specific ASH1 domains in mitotic binding, gene regulation, and survival that are distinct from its functions as a histone methyltransferase.


Structure ◽  
2015 ◽  
Vol 23 (1) ◽  
pp. 206-215 ◽  
Author(s):  
Sylvain Lanouette ◽  
James A. Davey ◽  
Fred Elisma ◽  
Zhibin Ning ◽  
Daniel Figeys ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alessandro Stirpe ◽  
Nora Guidotti ◽  
Sarah J Northall ◽  
Sinan Kilic ◽  
Alexandre Hainard ◽  
...  

The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.


Author(s):  
Sergio Raez-Villanueva ◽  
Amrita Debnath ◽  
Daniel B. Hardy ◽  
Alison C. Holloway

Abstract Prenatal exposure to nicotine, tobacco’s major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi49-vi50
Author(s):  
Junxia Zhang ◽  
Tianfu Yu ◽  
Ning Liu

Abstract Glioblastoma (GBM) displays cellular and genetical heterogeneity harboring a subpopulation of glioma stem cells (GSCs). Enhancer of zeste homolog 2 (EZH2), a histone lysine methyltransferase, is the core subunit of the polycomb repressor 2 (PRC2) complex, mediates gene transcriptional repression in both normal and tumor stem cells. An oncogenic role of EZH2 as a PRC2-dependent transcriptional silencer is well established; however, non-canonical functions of EZH2 are incompletely understood. Here we found a novel oncogenic mechanism for EZH2 in a PRC2-indenpend way in GSCs. Using HPLC-MS/MS and IP assay, EZH2 bound to HP1BP3 (heterochromatin protein 1 binding protein 3), a heterochromatin-related protein, with its pre-SET domain. Overexpression of H1P3B3 enhanced the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Intriguingly, H1PBP3 was up-regulated in high grade gliomas with proneural (PN) subtypes and had a high predictive value on prognosis in patients with PN gliomas. Furthermore, EZH2 and HP1BP3 co-activated the expression of WNT7B by blocking the methylation of H3K9, thereby increasing TMZ resistance and tumorigenicity of glioblastoma cells. Interestingly, inhibition of WNT7B autocrine via LGK974, a specific porcupine inhibitor, effectively reversed the TMZ resistance of both GSCs and GBM glioma cells expressing HP1BP3. Hence, targeting the PRC2-independent function of EZH2 is an effective approach to enhance the efficacy of treating GBM.


Sign in / Sign up

Export Citation Format

Share Document