05/01970 The influence of NaOH on the stability of paraffinic crude oil emulsion

2005 ◽  
Vol 46 (5) ◽  
pp. 293
Fuel ◽  
2005 ◽  
Vol 84 (2-3) ◽  
pp. 183-187 ◽  
Author(s):  
Mingyuan Li ◽  
Meiqin Lin ◽  
Zhaoliang Wu ◽  
Alfred A. Christy

2010 ◽  
Vol 7 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Zhaoxia Dong ◽  
Meiqin Lin ◽  
Hao Wang ◽  
Mingyuan Li

REAKTOR ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
B. Pramudono ◽  
H. B. Mat

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax


Author(s):  
N. H. Abdurahman ◽  
H. A. Magdib

The purpose of this research is to look into the formulation and evaluation of concentrated water-in-oil (W/O) emulsions stabilized by UMP NS-19-02 surfactant and their application for crude oil emulsion stabilization using gummy Malaysian crude oil. A two-petroleum oil from Malaysia oil refinery, i.e., Tapis petroleum oil and Tapis- Mesilla blend, were utilized to make water-in-oil emulsions. The various factors influencing emulsion characteristics and stability were evaluated. It was discovered that the stability of the water-in-oil emulsion improved by UMP NS-19-02 improved as the surfactant content rises, resulting in the decline of the crude oil-water interfacial tension (IFT). Nevertheless, the most optimum formulation of W/O emulsion was a 50:50 W/O ratio with 1.0% surfactant. Additionally, raising the oil content, salt concentration, duration and mixing speed, and pH of the emulsion resulted in higher emulsion stability. It also raised the temperature of the initial mixing, which significantly decreased the formulated emulsions' viscosity. The results showed that stable emulsions could be formed using the UMP NS-19-02 surfactant.


2014 ◽  
Vol 7 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Renyi Cao ◽  
Linsong Cheng ◽  
Y. Zee Ma

Characterization of rheological behavior of alkali-surfactant-polymer (ASP) solution and oil emulsion is difficult, due to the complex chemical components and various physiochemical reactions with oil during chemical flooding. Through rheological experiments of ASP and crude oil emulsion, this paper presents the studies on influencing factors of rheological behavior, including interfacial tension, polymer and water cut, and discusses the stability mechanism of ASP and crude oil emulsion. The relationships among viscosity, interfacial tension, water cut and sheer rate were built through fitting the experimental data. The model and calculation can be used to more accurately simulate the ASP flooding in oil reservoirs.


2015 ◽  
Vol 29 (4) ◽  
pp. 2211-2218 ◽  
Author(s):  
R. M. Charin ◽  
G. Salathe ◽  
M. Nele ◽  
F. W. Tavares

Author(s):  
Emmanuel Ekott

Due to the simplicity of scaling equations and its applicability to colloid chemistry, the scaling theory is widely used in studying emulsion properties such as force profiles. Scaling equations were developed for the studied samples for correlation of asphaltene solvation with stability of crude oil emulsions. Correlations were made for viscosity and percentage water resolved by varying the volume concentration of toluene in heptol mixture that was used as solvent for the asphaltene re-dissolution. The study shows that tuning the composition of heptol allows fine control of colloidal forces between asphaltene surfaces in an organic solvent and therefore determines the stability state of the emulsion. Statistically derived correlation equations provide for a range in the aromaticity of the crude medium for which an optimum stability is observed and therefore gives good understanding on the control of emulsion stability. The study further shows that emulsion inversion can be achieved by adjusting the concentration of surfactant.


Sign in / Sign up

Export Citation Format

Share Document