scholarly journals Malaysian Crude Oil Emulsions : Stability Study

REAKTOR ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
B. Pramudono ◽  
H. B. Mat

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax

2015 ◽  
Vol 15 (4) ◽  
pp. 997-1008
Author(s):  
Małgorzata Tabaszewska ◽  
Tadeusz Grega ◽  
Dorota Najgebauer-Lejko ◽  
Grażyna Jaworska

Abstract The effect of 0, 1.5, 5, 10 and 15 (g 100 g-1 of emulsion) WPC 80 additive (80% whey protein concentrate) on the pH, physical, oxidative and microbiological stability of the water-in-oil emulsion was studied during 16-week storage at ~20°C at 4-week intervals. All determined features were significantly affected by the supplementation. The most beneficial as regards storage stability was the emulsion with 5% of WPC 80. This treatment was the most resistant to oxidative changes showing low increase of the concentration of conjugated diene hydroperoxides (from 0.92 to 1.04 mg g-1) and of the thiobarbituric acid reactive substances (from 0.83 to 1.37 mg malondialdehyde g-1) as well as only slight increment (by 0.47 log CFU g-1) of the microorganisms number during storage. Thus, the results of the present study revealed that whey proteins can be applied in the proper amount to produce cosmetic emulsions composed of natural ingredients and with reasonable storage stability.


Author(s):  
N. H. Abdurahman ◽  
H. A. Magdib

The purpose of this research is to look into the formulation and evaluation of concentrated water-in-oil (W/O) emulsions stabilized by UMP NS-19-02 surfactant and their application for crude oil emulsion stabilization using gummy Malaysian crude oil. A two-petroleum oil from Malaysia oil refinery, i.e., Tapis petroleum oil and Tapis- Mesilla blend, were utilized to make water-in-oil emulsions. The various factors influencing emulsion characteristics and stability were evaluated. It was discovered that the stability of the water-in-oil emulsion improved by UMP NS-19-02 improved as the surfactant content rises, resulting in the decline of the crude oil-water interfacial tension (IFT). Nevertheless, the most optimum formulation of W/O emulsion was a 50:50 W/O ratio with 1.0% surfactant. Additionally, raising the oil content, salt concentration, duration and mixing speed, and pH of the emulsion resulted in higher emulsion stability. It also raised the temperature of the initial mixing, which significantly decreased the formulated emulsions' viscosity. The results showed that stable emulsions could be formed using the UMP NS-19-02 surfactant.


SPE Journal ◽  
2008 ◽  
Vol 13 (03) ◽  
pp. 346-353 ◽  
Author(s):  
Jan H. Beetge ◽  
Bruce Horne

Summary Resolution of water-and-oil emulsions is critical to the oilfield industry. A wide variety of undesirable emulsions are formed during the production, handling, and processing of crude oil. Although various methods are used, dehydration of crude oils is achieved mostly by gravitational sedimentation, normally at elevated temperatures and with the addition of chemical demulsifiers. The quantitative evaluation of emulsion stability by a critical-electric-field (CEF) technique was developed to play a significant role in chemical-demulsifier research. It was found that the CEF technique is useful not only in the evaluation of water-in-oil-emulsion stability, but also in studying the mechanisms of stabilization and demulsification. A method was developed to study the mechanism of emulsion stabilization in terms of flocculation and coalescence behavior of a crude-oil emulsion. The effect of chemical demulsifiers on emulsion stability was evaluated in terms of the method developed in this study. By following this approach, it is possible to determine the relative amount of energy required for both flocculation and coalescence in the presence of a chemical demulsifier. Introduction The inevitable creation and subsequent resolution of water-in-oil emulsions during the production and processing of crude oils are of significant importance in the oilfield industry. These emulsions, which typically could be any combination of water-in-oil, oil-in-water, or complex emulsions, are diverse in their nature and stability. The majority of oilfield emulsions are resolved by the application of chemical demulsifiers in special processes under specific conditions. The stability of crude-oil emulsions is influenced by many variables; therefore, and chemical demulsifiers are developed specifically for each application to achieve optimum economic efficiency. Emulsion stability of water-in-oil emulsions encountered in the oilfield industry can be evaluated with various methods (e.g., determining droplet size and distribution, determining the amount of water resolved as a second phase, analyzing moisture of the oil phase, and more-sophisticated methods such as interfacial rheology). Sullivan et al. (2004) suggested the use of CEF as a method to provide information for stability-correlation development. Commercial separation of a dispersed aqueous phase from typical crude oil by electrostatic methods is well-known and dates to the early 20th century (Cottrell 1911; Cottrell and Speed 1911). Electrostatic dehydration technology is still being developed and refined to play an important role in challenging oilfield applications (Warren 2002). The use of CEF, as a method to evaluate water-in-oil-emulsion stability, has been developed recently by Kilpatrick et al. (2001). In their CEF technique, a sample of water-in-oil emulsion is injected between two parallel electrode plates. A direct-current voltage is applied between the two electrodes and is increased in incremental steps, with continuous monitoring of the conductivity or the amount of electrical current through the oil sample. Fig. 1 shows a simple diagram of the CEF technique. In response to the increasing applied electric field, the water droplets tend to align themselves to form agglomerated columns of droplets, which form a conducting bridge once a critical voltage (or electric field) has been reached. The strength of the electric field at which the sample shows a sharp increase in conductivity (increase in current through sample, between the two electrode plates) is recorded as the CEF. By this method, relative emulsion stability is compared quantitatively in terms of the CEF value and expressed in units of kV cm-1. In contrast to the method of Sjöblom, we have used alternating current with parallel-plate electrodes at the tip of a probe, which was submerged in the hydrocarbon medium. Comparison of crude-oil emulsions by CEF techniques is well-documented (Sullivan et al. 2004; Aske et al. 2002), but no reference to the use of CEF in chemical-demulsifier development could be found. It is the purpose of this study to develop the CEF technique for application in chemical-demulsifier research.


Author(s):  
Emmanuel Ekott

Due to the simplicity of scaling equations and its applicability to colloid chemistry, the scaling theory is widely used in studying emulsion properties such as force profiles. Scaling equations were developed for the studied samples for correlation of asphaltene solvation with stability of crude oil emulsions. Correlations were made for viscosity and percentage water resolved by varying the volume concentration of toluene in heptol mixture that was used as solvent for the asphaltene re-dissolution. The study shows that tuning the composition of heptol allows fine control of colloidal forces between asphaltene surfaces in an organic solvent and therefore determines the stability state of the emulsion. Statistically derived correlation equations provide for a range in the aromaticity of the crude medium for which an optimum stability is observed and therefore gives good understanding on the control of emulsion stability. The study further shows that emulsion inversion can be achieved by adjusting the concentration of surfactant.


2011 ◽  
Vol 189-193 ◽  
pp. 3153-3157
Author(s):  
Yan Zhen Zhang ◽  
Yong Hong Liu ◽  
Ren Jie Ji ◽  
Bao Ping Cai

In this paper, the EDM performance of water-in-oil (W/O) emulsions dielectric with different surfactant concentration is investigated by correlated to its physical properties, such as viscosity and droplets size, which is predominantly determined by the surfactant concentration. Experimental results show that the stability of the W/O emulsions increases with increasing surfactant concentration, whereas the EDM performance deteriorates with increasing surfactant concentration. So, taking a comprehensively consideration of the emulsion stability and EDM performance, the concentration of surfactant must be appropriately selected.


2021 ◽  
Vol 196 ◽  
pp. 107695
Author(s):  
Guangsheng Cao ◽  
Tong Du ◽  
Yujie Bai ◽  
Tingyuan Yang ◽  
Jize Zuo

2017 ◽  
Vol 7 (1) ◽  
pp. 29-37
Author(s):  
Hulya Cakmak ◽  
Gozde Ela Gurpuz ◽  
Neslihan Bozdogan ◽  
Seher Kumcuoglu ◽  
Sebnem Tavman

Sign in / Sign up

Export Citation Format

Share Document