06/00289 Performance optimization of a solar driven heat engine with finite-rate heat transfer

2006 ◽  
Vol 47 (1) ◽  
pp. 41
Author(s):  
Houcheng Zhang ◽  
Lanmei Wu ◽  
Guoxing Lin

A class of solar-driven heat engines is modeled as a combined system consisting of a solar collector and a unified heat engine, in which muti-irreversibilities including not only the finite rate heat transfer and the internal irreversibility, but also radiation-convection heat loss from the solar collector to the ambience are taken into account. The maximum overall efficiency of the system, the optimal operating temperature of the solar collector, the optimal temperatures of the working fluid and the optimal ratio of heat transfer areas are calculated by using numerical calculation method. The influences of radiation-convection heat loss of the collector and internal irreversibility on the cyclic performances of the solar-driven heat engine system are revealed. The results obtained in the present paper are more general than those in literature and the performance characteristics of several solar-driven heat engines such as Carnot, Brayton, Braysson and so on can be directly derived from them.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 419
Author(s):  
Congzheng Qi ◽  
Zemin Ding ◽  
Lingen Chen ◽  
Yanlin Ge ◽  
Huijun Feng

Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Conor N. Murphy ◽  
Paul R. Eastham

Abstract Lasers, photovoltaics, and thermoelectrically-pumped light emitting diodes are thermodynamic machines which use excitons (electron-hole pairs) as the working medium. The heat transfers in such devices are highly irreversible, leading to low efficiencies. Here we predict that reversible heat transfers between a quantum-dot exciton and its phonon environment can be induced by laser pulses. We calculate the heat transfer when a quantum-dot exciton is driven by a chirped laser pulse. The reversibility of this heat transfer is quantified by the efficiency of a heat engine in which it forms the hot stroke, which we predict to reach 95% of the Carnot limit. This performance is achieved by using the time-dependent laser-dressing of the exciton to control the heat current and exciton temperature. We conclude that reversible heat transfers can be achieved in excitonic thermal machines, allowing substantial improvements in their efficiency.


1999 ◽  
Author(s):  
Richard B. Peterson

Abstract Richard P. Feynman introduced the field of microscale and nanoscale engineering in 1959 by giving a talk on how to make things very small. Feynman’s premise was that no fundamental physical laws limit the size of a machine down to the microscopic level. Is this true for all types of machines? Are micro thermal devices fundamentally different than mechanically-based machines with respect to their scaling laws? This paper demonstrates that micro thermal engines do indeed suffer serious performance degradation as their characteristic size is reduced. A micro thermal engine, and more generally, any thermally-based micro device, depends on establishing a temperature difference between two regions within a small structure. In this paper, the performance of a micro thermal engine is explored as a function of the characteristic length parameter, L. In the development, the important features of thermal engines are discussed in the context of developing simple scaling laws predicting the dependency of the operating efficiency on L. After this is accomplished, a general model is derived for a heat engine operating between two temperature reservoirs and having both intrinsic and extrinsic sources of irreversibility, i.e. thermal conductances and heat leakage paths for the heat flow. With this model and typical numerical values for the conductances, micro heat engine performance is predicted as the characteristic size is reduced. This paper demonstrates that under at least one particular formulation of the problem, there may indeed be some room at the bottom. However, heat transfer does play a critical role in determining micro engine performance and depending on how the heat transfer through the engine is modeled, vanishingly small efficiencies can result as the characteristic engine size goes to zero.


Author(s):  
Olubunmi Popoola ◽  
Ayobami Bamgbade ◽  
Yiding Cao

An effective design option for a cooling system is to use a two-phase pumped cooling loop to simultaneously satisfy the temperature uniformity and high heat flux requirements. A reciprocating-mechanism driven heat loop (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the two-phase working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study has not been undertaken to understand its working mechanism and provide guidance for the device design. The objective of this paper is to develop a numerical model for the RMDHL to predict its operational performance under different working conditions. The developed numerical model has been successfully validated by the existing experimental data and will provide a powerful tool for the design and performance optimization of future RMDHLs. The study also reveals that the maximum velocity in the flow occurs near the wall rather than at the center of the pipe, as in the case of unidirectional steady flow. This higher velocity near the wall may help to explain the enhanced heat transfer of an RMDHL.


Sign in / Sign up

Export Citation Format

Share Document