97/04915 Trace elements contained in ashes produced by coal combustion in thermal power plants

1997 ◽  
Vol 38 (6) ◽  
pp. 426
2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1611-1626
Author(s):  
Predrag Stefanovic ◽  
Dejan Cvetinovic ◽  
Zoran Markovic ◽  
Milic Eric ◽  
Simeon Oka ◽  
...  

Paper presents short review of research problems, applied methods for solving problems and main results obtained by the researchers in Laboratory for Thermal Engineering and Energy (LTE) of the "Vinca" Institute of Nuclear Sciences, Belgrade, Serbia dealing with pulverized coal combustion processes and technologies for reduction of pollutions problems at thermal power plants in a period since 2000. The presented results were published in numerous studies realized for different users, Ph. D., Masters, and Specialist thesis, in international and domestic scientific journals and monographs, presented at numerous international and domestic scientific conferences, etc. Presented research projects and results of applied research projects realized at pulverized coal combustion thermal power plants clearly show that LTE team was involved in key activities of rehabilitation and modernization, including implementation of best available technologies for pollution reduction at thermal power plants, in the region of South East Europe.


2010 ◽  
Vol 10 (9) ◽  
pp. 20729-20768 ◽  
Author(s):  
H. Z. Tian ◽  
Y. Wang ◽  
Z. G. Xue ◽  
K. Cheng ◽  
Y. P. Qu ◽  
...  

Abstract. Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1°×1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289.11 t), Henan (241.45 t), Jiangsu (175.44 t), Anhui (168.89 t), and Hubei (163.96 t). Between 2000 and 2007, provinces always rank at the top five largest Hg, As, and Se emission sources are: Shandong, Hebei, Shanxi, Henan, and Jiangsu, most of which are located in the east and are traditional industry-based or economically energy intensive areas in China. Notably, Hg, As, and Se emissions from coal combustion in China begin to grow at a more moderate pace since 2005. Emissions from coal-fired power plants sector began to decrease though the coal use had been increasing steadily, which can be mainly attributed to the more and more installation of WFGD in power plants, thus the further research and control orientations of importance for these hazardous trace elements should be the industrial sector.


2010 ◽  
Vol 10 (23) ◽  
pp. 11905-11919 ◽  
Author(s):  
H. Z. Tian ◽  
Y. Wang ◽  
Z. G. Xue ◽  
K. Cheng ◽  
Y. P. Qu ◽  
...  

Abstract. Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1° × 1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289.11 t), Henan (241.45 t), Jiangsu (175.44 t), Anhui (168.89 t), and Hubei (163.96 t). Between 2000 and 2007, provinces always rank at the top five largest Hg, As, and Se emission sources are: Shandong, Hebei, Shanxi, Henan, and Jiangsu, most of which are located in the east and are traditional industry-based or economically energy intensive areas in China. Notably, Hg, As, and Se emissions from coal combustion in China begin to grow at a more moderate pace since 2005. Emissions from coal-fired power plants sector began to decrease though the coal use had been increasing steadily, which can be mainly attributed to the increasing use of wet flue gas desulfurization (WFGD) in power plants, thus the further research and control orientations of importance for these hazardous trace elements should be the industrial sector.


2005 ◽  
Vol 15 (03n04) ◽  
pp. 301-308
Author(s):  
VENKATATHRI VIJAYAN

Coal ash is a major component of solid residue resulting by coal-fired thermal power plants. Trace elements like Mn , Cu , Zn , As , Se , Mo and Pb in fly ash and pond ash samples collected from ten coal-fired thermal power plants in India, and crops (rice, wheat, maize grain and straw and onion bulbs) grown on coal ash treated soils at Angul, Bakreswar and Farakka sites of India have been analysed at Institute of Physics by Particle Induced X-ray Emission and Energy Dispersive X-Ray Fluorescence techniques. Our analysis shows that the concentrations of trace elements of grains are higher than in straws. Increasing trends in the uptake of micro-nutrients by the crops due to application of coal ash, were recorded, but within permissible limits.


Sign in / Sign up

Export Citation Format

Share Document