98/02220 Experimental and theoretical performance of a demonstration solar chimney model—Part I: Mathematical model development

1998 ◽  
Vol 39 (3) ◽  
pp. 201
2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Ibrahim A Abuashe ◽  
Bashir H Arebi ◽  
Essaied M Shuia

A mathematical model based on the momentum, continuity and energy balance equations was developed to simulate the behavior of the air flow inside the solar chimney system. The model can estimate the power output and performance of solar chimney systems. The developed mathematical model is validated by the experimental data that were collected from small pilot solar chimney; (experiment was presented in part I). Good agreement was obtained between the experimental results and that from the mathematical model. The model can be used to analyze the solar chimney systems and to determine the effect of geometrical parameters such as chimney height and collector diameter on the power output and the efficiency of the system


Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2017 ◽  
Vol 5 (4) ◽  
pp. 294-298 ◽  
Author(s):  
T. Mekhail ◽  
◽  
A. Rekaby ◽  
M. Fathy ◽  
M. Bassily ◽  
...  

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
David Park ◽  
Francine Battaglia

A solar chimney is a natural ventilation technique that has potential to save energy consumption as well as to maintain the air quality in a building. However, studies of buildings are often challenging due to their large sizes. The objective of this study was to determine the relationships between small- and full-scale solar chimney system models. Computational fluid dynamics (CFD) was employed to model different building sizes with a wall-solar chimney utilizing a validated model. The window, which controls entrainment of ambient air for ventilation, was also studied to determine the effects of window position. A set of nondimensional parameters were identified to describe the important features of the chimney configuration, window configuration, temperature changes, and solar radiation. Regression analysis was employed to develop a mathematical model to predict velocity and air changes per hour, where the model agreed well with CFD results yielding a maximum relative error of 1.2% and with experiments for a maximum error of 3.1%. Additional wall-solar chimney data were tested using the mathematical model based on random conditions (e.g., geometry, solar intensity), and the overall relative error was less than 6%. The study demonstrated that the flow and thermal conditions in larger buildings can be predicted from the small-scale model, and that the newly developed mathematical equation can be used to predict ventilation conditions for a wall-solar chimney.


Author(s):  
H Sh Ousaloo ◽  
Gh Sharifi ◽  
B Akbarinia

The ground-based spacecraft dynamics simulator plays an important role in the implementation and validation of attitude control scenarios before a mission. The development of a comprehensive mathematical model of the platform is one of the indispensable and challenging steps during the control design process. A precise mathematical model should include mass properties, disturbances forces, mathematical models of actuators and uncertainties. This paper presents an approach for synthesizing a set of trajectories scenarios to estimate the platform inertia tensor, center of mass and aerodynamic drag coefficients. Reaction wheel drag torque is also estimated for having better performance. In order to verify the estimation techniques, a dynamics model of the satellite simulator using MATLAB software was developed, and the problem reduces to a parameter estimation problem to match the experimental results obtained from the simulator using a classical Lenevnberg-Marquardt optimization method. The process of parameter identification and mathematical model development has implemented on a three-axis spherical satellite simulator using air bearing, and several experiments are performed to validate the results. For validation of the simulator model, the model and experimental results must be carefully matched. The experimental results demonstrate that step-by-step implementation of this scenario leads to a detailed model of the platform which can be employed to design and develop control algorithms.


Sign in / Sign up

Export Citation Format

Share Document