Robust thyristor-controlled series capacitor controller design based on linear matrix inequality for a multi-machine power system

2002 ◽  
Vol 24 (8) ◽  
pp. 621-629 ◽  
Author(s):  
Masachika Ishimaru ◽  
Ryuichi Yokoyama ◽  
Goro Shirai ◽  
Takahide Niimura
2012 ◽  
Vol 63 (4) ◽  
pp. 233-241 ◽  
Author(s):  
Mohammad Ataei ◽  
Rahmat-Allah Hooshmand ◽  
Moein Parastegari

A Wide Range Robust PSS Design Based on Power System Pole-Placement Using Linear Matrix InequalityIn this paper, a new method for robust PSS design based on the power system pole placement is presented. In this stabilizer, a feedback gain matrix is used as a controller. The controller design is proposed by formulating the problem of robust stability in a Linear Matrix Inequality (LMI) form. Then, the feedback gain matrix is designed based on the desired region of the closed loop system poles. This stabilizer shifts the poles of the power system in different operational points into the desired regions ins-plane, such that the response of the power system will have proper damping ratio in all the operational points. The uncertainties of the power system parameters are also considered in this robust technique. Finally, in order to show the advantages of the proposed method in comparison with conventional PSS, some simulation results are provided for a power system case study in different operational points.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Jer Chang ◽  
Bo-Jyun Huang ◽  
Po-Hsun Chen

For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.


Author(s):  
Hisham M. Soliman ◽  
Mahmoud Soliman

<p>Power systems are subject to undesirable small oscillations that might grow to cause system shutdown and consequently great loss of national economy. The present manuscript  proposes two  designs for observer-based robust power system stabilizer (PSS) using Linear Matrix Inequality (LMI) approach to damp such oscillations. A model to describe power system dynamics for different loads is derived in the norm-bounded form. The first controller design is based on the derived model to achieve  robust stability against load variation. The design is based on a new Bilinear matrix inequality (BMI) condition. The BMI optimization  is solved interatively in terms of Linear Matrix Inequality (LMI) framework. The condition contains a symmetric positive definite full matrix to be obtained, rather than the commonly used block diagonal form. The difficulty in finding a feasible solution is thus alleviated. The resulting LMI is of small size, easy to solve. The second PSS design shifts the closed loop poles in a desired region so as to achieve a favorite  settling time and damping ratio via a non-iterative solution to a set of LMIs.  The approach provides a systematic way to design a robust output feedback PSS which  guarantees good dynamic performance for different loads. <span style="font-size: 10px;">Simulation results based on single-machine and multi-machine power system models verify the ability of the proposed PSS to satisfy control objectives for a wide range of load conditions.</span></p>


2005 ◽  
Vol 125 (5) ◽  
pp. 461-468
Author(s):  
Atsushi Ishigame ◽  
Hiromu Sakaguchi ◽  
Jun Takashima ◽  
Shirou Suzaki

Author(s):  
Hisham M. Soliman ◽  
Mahmoud Soliman

<p>Power systems are subject to undesirable small oscillations that might grow to cause system shutdown and consequently great loss of national economy. The present manuscript  proposes two  designs for observer-based robust power system stabilizer (PSS) using Linear Matrix Inequality (LMI) approach to damp such oscillations. A model to describe power system dynamics for different loads is derived in the norm-bounded form. The first controller design is based on the derived model to achieve  robust stability against load variation. The design is based on a new Bilinear matrix inequality (BMI) condition. The BMI optimization  is solved interatively in terms of Linear Matrix Inequality (LMI) framework. The condition contains a symmetric positive definite full matrix to be obtained, rather than the commonly used block diagonal form. The difficulty in finding a feasible solution is thus alleviated. The resulting LMI is of small size, easy to solve. The second PSS design shifts the closed loop poles in a desired region so as to achieve a favorite  settling time and damping ratio via a non-iterative solution to a set of LMIs.  The approach provides a systematic way to design a robust output feedback PSS which  guarantees good dynamic performance for different loads. <span style="font-size: 10px;">Simulation results based on single-machine and multi-machine power system models verify the ability of the proposed PSS to satisfy control objectives for a wide range of load conditions.</span></p>


Author(s):  
Hisham M. Soliman ◽  
Mahmoud Soliman

<p>Power systems are subject to undesirable small oscillations that might grow to cause system shutdown and consequently great loss of national economy. A model to describe power system dynamics for different loads is derived in the norm-bounded form. The first controller design is based on the derived model to achieve  robust stability against load variation. The design is based on a new Bilinear matrix inequality (BMI) condition. The BMI optimization  is solved interatively in terms of Linear Matrix Inequality (LMI) framework. The condition contains a symmetric positive definite full matrix to be obtained, rather than the commonly used block diagonal form. The difficulty in finding a feasible solution is thus alleviated. The resulting LMI is of small size, easy to solve. The second PSS design shifts the closed loop poles in a desired region so as to achieve a favorite  settling time and damping ratio via a non-iterative solution to a set of LMIs.  Simulation results based on single-machine and multi-machine power system models verify the ability of the proposed PSS to satisfy control objectives for a wide range of load conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document