scholarly journals Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Jer Chang ◽  
Bo-Jyun Huang ◽  
Po-Hsun Chen

For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

Author(s):  
Chenglai Zhou ◽  
Ping He ◽  
Heng Li ◽  
Zuxin Li ◽  
Zhouchao Wei ◽  
...  

This article considers finite-time bounded controller design for one-sided Lipschitz nonlinear differential inclusions. Sufficient conditions of finite-time bounded criterion are given employing convex hull Lyapunov function approach. An algorithm is designed to calculate the finite-time bounded controller. Moreover, a system initial state selection method is presented to find the domain of system initial state aid for transforming quasi-linear matrix inequality–based conditions to linear matrix inequality-based conditions. Finally, a numerical example and a comparison experiment example are given to illustrate the effectiveness of this proposed design method.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Qiankun Song ◽  
Jinde Cao

The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed criteria. It is noteworthy that because neither model transformation nor free-weighting matrices are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained results are less conservative and more computationally efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yanke Zhong ◽  
Tefang Chen

This paper is concerned with the design of a robust observer for the switched positive linear system with uncertainties. Sufficient conditions of building a robust observer are established by using the multiple copositive Lyapunov-krasovskii function and the average dwell time approach. By introducing an auxiliary slack variable, these sufficient conditions are transformed into LMI (linear matrix inequality). A numerical example is given to illustrate the validities of obtained results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Mi Wang ◽  
Shuai Song ◽  
Jingtao Man

This paper studies fuzzy controller design problem for a class of nonlinear switched distributed parameter systems (DPSs) subject to time-varying delay. Initially, the original nonlinear DPSs are accurately described by Takagi-Sugeno fuzzy model in a local region. On the basis of parallel distributed compensation technique, mode-dependent fuzzy proportional and fuzzy proportional-spatial-derivative controllers are constructed, respectively. Subsequently, using single Lyapunov-Krasovskii functional and some matrix inequality methods, sufficient conditions that guarantee the stability and dissipativity of the closed-loop systems are presented in the form of linear matrix inequalities, which allow the control gain matrices to be easily obtained. Finally, numerical examples are provided to demonstrate the validity of the designed controllers.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Xin-rong Cong ◽  
Long-suo Li

This paper investigates the robust stability for a class of stochastic systems with both state and control inputs. The problem of the robust stability is solved via static output feedback, and we convert the problem to a constrained convex optimization problem involving linear matrix inequality (LMI). We show how the proposed linear matrix inequality framework can be used to select a quadratic Lyapunov function. The control laws can be produced by assuming the stability of the systems. We verify that all controllers can robustly stabilize the corresponding system. Further, the numerical simulation results verify the theoretical analysis results.


Sign in / Sign up

Export Citation Format

Share Document