Transplantation of marrow cells from children with standard risk-acute lymphoblastic leukemia at the end of therapy into NOD/SCID mice for detecting residual leukemic cells with in vivo growth potential

2003 ◽  
Vol 27 (12) ◽  
pp. 1153-1157 ◽  
Author(s):  
Manuel Ramı́rez ◽  
Miguel A Dı́az ◽  
Luis Madero ◽  
Juan A Bueren
Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2973-2981 ◽  
Author(s):  
S Kamel-Reid ◽  
M Letarte ◽  
M Doedens ◽  
A Greaves ◽  
B Murdoch ◽  
...  

Bone marrow samples from patients with pre-B acute lymphoblastic leukemia (pre-B ALL), either at diagnosis or at relapse, were transplanted into scid mice to determine whether these freshly obtained leukemic cells could proliferate in vivo and whether there were any differences in their in vivo growth characteristics. Cells from three patients who relapsed within 13 months of diagnosis proliferated rapidly in the murine bone marrow, spleen, and thymus, invaded peripheral organs, and resulted in morbidity and mortality of the animals within 4 to 16 weeks. Cells from two patients who relapsed 3.5 years after diagnosis grew much slower than the early relapse samples, taking up to 30 weeks to infiltrate the bone marrow of recipient mice. In contrast, leukemic cells were absent or were detected at low numbers in scid mice transplanted with cells obtained at diagnosis from three patients who have not yet relapsed. These results show an increased ability of leukemic cells from patients with aggressive lymphoblastic leukemia of poor prognosis to proliferate in scid mice.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2973-2981 ◽  
Author(s):  
S Kamel-Reid ◽  
M Letarte ◽  
M Doedens ◽  
A Greaves ◽  
B Murdoch ◽  
...  

Abstract Bone marrow samples from patients with pre-B acute lymphoblastic leukemia (pre-B ALL), either at diagnosis or at relapse, were transplanted into scid mice to determine whether these freshly obtained leukemic cells could proliferate in vivo and whether there were any differences in their in vivo growth characteristics. Cells from three patients who relapsed within 13 months of diagnosis proliferated rapidly in the murine bone marrow, spleen, and thymus, invaded peripheral organs, and resulted in morbidity and mortality of the animals within 4 to 16 weeks. Cells from two patients who relapsed 3.5 years after diagnosis grew much slower than the early relapse samples, taking up to 30 weeks to infiltrate the bone marrow of recipient mice. In contrast, leukemic cells were absent or were detected at low numbers in scid mice transplanted with cells obtained at diagnosis from three patients who have not yet relapsed. These results show an increased ability of leukemic cells from patients with aggressive lymphoblastic leukemia of poor prognosis to proliferate in scid mice.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3052-3062 ◽  
Author(s):  
FM Uckun ◽  
JR Downing ◽  
R Gunther ◽  
LM Chelstrom ◽  
D Finnegan ◽  
...  

Severe combined immunodeficient (SCID) mice were injected intravenously with 5 x 10(6) primary bone marrow (BM) blasts from newly diagnosed patients with E2A-PBX1 fusion transcript positive t(1;19)(q23;p13) pre- B acute lymphoblastic leukemia (ALL). A marked variation existed in the pattern and extent of leukemic cell engraftment in SCID mice challenged with t(1;19) pre-B ALL blasts. Blasts from some patients caused disseminated leukemia that was detected by histopathology and/or flow cytometry, whereas blasts from other patients produced occult leukemia that was only detected by flow cytometry and/or polymerase-chain reaction. Notably, the ability of primary t(1;19) pre-B ALL blasts to cause disseminated leukemia in SCID mice was associated with poor prognosis. Six of six patients whose blasts caused disseminated leukemia in SCID mice relapsed at a median of 7.8 months (range: 5.7 to 25.2 months). In contrast, the remaining four patients whose blasts did not engraft or only partially engrafted remain in complete remission at 28 to 47 months. A new E2A-PBX-1 fusion transcript positive t(1;19) pre- B ALL cell line (designated LC1;19) with the composite immunophenotype CD7-CD10+CD19+CD45-HLA-DR+C mu+ was established by expanding BM blasts from a SCID mouse, which died of human t(1;19) ALL at 7 weeks after inoculation of primary leukemic blasts from a t(1;19) ALL patient. This cell line caused disseminated and invariably fatal leukemia when greater than 10(4) cells were injected intravenously into SCID mice. Total body irradiation followed by syngeneic BM transplantation (BMT) showed limited efficacy against LC1;19 leukemia in SCID mice. To our knowledge, this study is the first to (1) examine the in vivo growth of primary t(1;19) pre-B ALL blasts in SCID mice and (2) show that leukemic blasts from a majority of newly diagnosed t(1;19) pre-B ALL patients cause disseminated human leukemia in SCID mice. Our results indicate that t(1;19) pre-B ALL is biologically heterogeneous with regard to its in vivo growth pattern in SCID mice, a feature that may be predictive of prognosis. The described LC1;19 SCID mouse model may prove particularly useful for designing more effective treatment strategies against poor-prognosis t(1;19) ALL.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3052-3062 ◽  
Author(s):  
FM Uckun ◽  
JR Downing ◽  
R Gunther ◽  
LM Chelstrom ◽  
D Finnegan ◽  
...  

Abstract Severe combined immunodeficient (SCID) mice were injected intravenously with 5 x 10(6) primary bone marrow (BM) blasts from newly diagnosed patients with E2A-PBX1 fusion transcript positive t(1;19)(q23;p13) pre- B acute lymphoblastic leukemia (ALL). A marked variation existed in the pattern and extent of leukemic cell engraftment in SCID mice challenged with t(1;19) pre-B ALL blasts. Blasts from some patients caused disseminated leukemia that was detected by histopathology and/or flow cytometry, whereas blasts from other patients produced occult leukemia that was only detected by flow cytometry and/or polymerase-chain reaction. Notably, the ability of primary t(1;19) pre-B ALL blasts to cause disseminated leukemia in SCID mice was associated with poor prognosis. Six of six patients whose blasts caused disseminated leukemia in SCID mice relapsed at a median of 7.8 months (range: 5.7 to 25.2 months). In contrast, the remaining four patients whose blasts did not engraft or only partially engrafted remain in complete remission at 28 to 47 months. A new E2A-PBX-1 fusion transcript positive t(1;19) pre- B ALL cell line (designated LC1;19) with the composite immunophenotype CD7-CD10+CD19+CD45-HLA-DR+C mu+ was established by expanding BM blasts from a SCID mouse, which died of human t(1;19) ALL at 7 weeks after inoculation of primary leukemic blasts from a t(1;19) ALL patient. This cell line caused disseminated and invariably fatal leukemia when greater than 10(4) cells were injected intravenously into SCID mice. Total body irradiation followed by syngeneic BM transplantation (BMT) showed limited efficacy against LC1;19 leukemia in SCID mice. To our knowledge, this study is the first to (1) examine the in vivo growth of primary t(1;19) pre-B ALL blasts in SCID mice and (2) show that leukemic blasts from a majority of newly diagnosed t(1;19) pre-B ALL patients cause disseminated human leukemia in SCID mice. Our results indicate that t(1;19) pre-B ALL is biologically heterogeneous with regard to its in vivo growth pattern in SCID mice, a feature that may be predictive of prognosis. The described LC1;19 SCID mouse model may prove particularly useful for designing more effective treatment strategies against poor-prognosis t(1;19) ALL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 238-238
Author(s):  
Frederic Barabe ◽  
James A. Kennedy ◽  
John E. Dick

Abstract Identification of genes and translocations involved in human leukemia, as well as classification and clustering by gene arrays, have greatly evolved in the past years. However, the mechanisms of human leukemogenesis remain to be elucidated and the failure to develop an in vivo model where primary human hematopoietic cells are transformed into leukemic cells represents a significant limitation. Using a retrovirus encoding the oncogene MLL-ENL resulting from the t(11;19)(q23;p13.3) translocation found in acute myeloid leukemias (AML) as well as in acute lymphoblastic leukemias (ALL) of B or T cell origin, we infected lineage-negative cord blood cells and injected those cells into sub-lethally irradiated NOD/SCID mice. 15 to 20 weeks after injection, all the mice developed an aggressive pro-B acute lymphoblastic leukemia characterized by immature B cells (CD10+, CD19+, CD20−, IgD−, IgM−) involving more than 90% of bone marrow. Spleen and thymus were increased in size and infiltrated with >90% leukemic cells. Furthermore, analysis of the lungs and liver showed significant infiltration of these organs. Transplantation of leukemic cells from primary mice to secondary recipients was able to recapitulate the disease with the same phenotype and the same organ involvement in a shorter period of time. If MLL-ENL transduced cells are grown in suspension culture with IL-3 and SCF, there is massive proliferation of cells blocked in differentiation along the monocytic lineage. In contrast to untransduced cells, colony-forming progenitors were maintained long term in these cultures and could be serially replated, suggestive of an enhanced capacity for self-renewal. After 50 to 70 days in culture, these cells were injected in NOD/SCID mice and mice were analyzed after 12 to 15 weeks. Monoblastic cells were engrafted in the bone marrow and spleen with the same phenotype of the cultured cells (CD33+, CD11b+, CD15+, HLA DR+). These cells were able to engraft secondary and tertiary recipients formally demostrating increased self-renewal capacity of the transformed stem cell. In a limited number of primary mice, transplanted with high cell doses, AML developed at 15 weeks post-transplant. To our knowledge, these results provide the first in vivo model where human hematopietic stem/progenitor cells are transformed into leukemia. Remarkably, depending on the cellular environment, MLL-ENL can induce ALL or AML in primary cells as a sole genetic event, although we cannot rule out the spontaneous acquistion of additional co-operating genetic or epigenetic abnormalities. This model provides a significant step forward to understand the mechanisms involved in human leukemogenesis.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 873-878 ◽  
Author(s):  
FM Uckun ◽  
H Sather ◽  
G Reaman ◽  
J Shuster ◽  
V Land ◽  
...  

Mice with severe combined immunodeficiency (SCID) provide a model system to examine the in vivo homing, engraftment, and growth patterns of normal and malignant human hematopoietic cells. The relation between leukemic cell growth in this model and the treatment outcome in patients from whom cells were derived has not been established. Leukemic cells from 42 children with newly diagnosed high-risk B- lineage acute lymphoblastic leukemia were inoculated intravenously into CB.17 SCID mice. Mice were killed at 12 weeks or when they became moribund as a result of disseminated leukemia. All mice were necropsied and subjected to a series of laboratory studies to assess their burden of human leukemic cells. Twenty-three patients whose leukemic cells caused histopathologically detectable leukemia in SCID mice had a significantly higher relapse rate than the 19 patients whose leukemic cells did not (estimated 5-year event-free survival: 29.5% v 94.7%; 95% confidence intervals, 11.2% to 50.7% v 68.1% to 99.2%; P < .0001 by log- rank test). The occurrence of overt leukemia in SCID mice was was a highly significant predictor of patient relapse. The estimated instantaneous risk of relapse for patients whose leukemic cells caused overt leukemia in SCID mice was 21.5-fold greater than that for the remaining patients. Thus, growth of human leukemic cells in SCID mice is a strong and independent predictor of relapse in patients with newly diagnosed high-risk B-lineage acute lymphoblastic leukemia.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4288-4295 ◽  
Author(s):  
FM Uckun ◽  
PG Steinherz ◽  
H Sather ◽  
M Trigg ◽  
D Arthur ◽  
...  

Abstract We examined the prognostic impact of CD2 antigen expression for 651 patients with T-lineage acute lymphoblastic leukemia (ALL), who were enrolled in front-line Childrens Cancer Group treatment studies between 1983 and 1994. There was a statistically significant correlation between the CD2 antigen positive leukemic cell content of bone marrow and probability of remaining in bone marrow remission, as well as overall event-free survival (EFS) (P = .0003 and P = .002, log-rank tests for linear trend). When compared with patients with the highest CD2 expression level (> 75% positivity), the life table relative event rate (RER) was 1.22 for patients with intermediate range CD2 expression level (30% to 75% positivity) and 1.81 for “CD2-negative” patients (< 30% positivity). At 6 years postdiagnosis, the EFS estimates for the three CD2 expression groups (low positivity to high positivity) were 52.8%, 65.5%, and 71.9%, respectively. CD2 expression remained a significant predictor of EFS after adjustment for the effects of other covariates by multivariate regression, with a RER of 1.47 for CD2- negative patients (P = .04). Analysis of T-lineage ALL patients shows a significant separation in EFS after adjustment for the National Cancer Institute (NCI) age and white blood cell (WBC) criteria for standard and high-risk ALL (P = .002, RER = 1.67). The determination of CD2 expression on leukemic cells helped identify patients with the better and poorer prognoses in both of these risk group subsets. For standard risk T-lineage ALL, CD2-negative patients had a worse outcome (P = .0007, RER = 2.92) with an estimated 5-year EFS of 55.9% as compared with 78.3% for the CD2-positive patients. Thus, CD2 negativity in standard risk T-lineage ALL identified a group of patients who had a worse outcome than high-risk T-lineage ALL patients who were CD2 positive. The percentage of CD2 antigen positive leukemic cells from T- lineage ALL patients is a powerful predictor of EFS after chemotherapy. This prognostic relationship is the first instance in which a biological marker in T-lineage ALL has been unequivocally linked to treatment outcome.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 860-860
Author(s):  
Inge M. Appel ◽  
Karin M. Kazemier ◽  
Anjo J.P. Veerman ◽  
Elisabeth van Wering ◽  
Monique L. Den Boer ◽  
...  

Abstract L-Asparaginase is an effective drug for treatment of children with acute lymphoblastic leukemia. The effectiveness is generally thought to result from a rapid depletion of asparagine in serum and cells. Several studies have shown that in vitro resistance to this drug is an independent prognostic factor in ALL. We investigated the clinical response of one in vivo dose of 1000 IU/m2 PEG-Asparaginase and its pharmacokinetic and pharmacodynamic effects in children with newly diagnosed ALL before the start of combination chemotherapy. 57 children (36M / 21F) were enrolled in the study: 2 pro B-ALL, 38 common/ pre B-ALL and 17 T-ALL. Genotyping of precursor B-ALL revealed 11 hyperdiploid, 8 TELAML1 positive, 2 BCRABL positive, no MLL rearrangement, 8 normal, 11 others. The clinical response to PEG-Asparaginase on day 0 (5 days after the PEG-Asparaginase infusion) was defined as good when the number of leukemic cells of peripheral blood was < 1 × 109/L, as intermediate when leukemic cells were 1-10 × 109/L, and as poor when leukemic cells were > 10 × 109/L. The in vivo window response was significantly related to immunophenotype and genotype: 26/38 common / pre B-ALL cases, especially those with hyperdiploidy and TELAML1 rearrangement, demonstrated a good clinical response compared to 8/17 T-ALL (p=0.01). Both BCRABL positive ALL cases showed a poor response (p=0.04). A poor in vivo clinical window response was related to in vitro resistance to L-Asparaginase (p=0.02) and both in vitro as well as in vivo response were prognostic factors for long-term event-free survival (Hazard ratio 6.4; p=0.004, and Hazard ratio 3.7; p=0.01, respectively). The L-Asparaginase activity in the serum was >100 IU/L for at least 15 days. The asparagine levels remained below the detection limit of 0.2 mM for at least 26 days with a concomitant rise in serum aspartate and glutamate. These findings confirm that PEG-Asparaginase will yield its pharmacodynamic effects for 2-4 weeks. After administration of one in vivo dose of 1000 IU/m2 PEG-Asparaginase no changes in apoptotic parameters or changes in intracellular levels of twenty amino acids in leukemic cells could be measured, in contradiction to the changes found after in vitro exposure. This may be explained by the rapid removal of apoptotic cells from the circulation in vivo. Otherwise it is possible that in vivo mesenchymal cells from the bone marrow supply leukemic blasts with asparagine in response to treatment with L-Asparaginase. Conclusion: The clinical response to one dose of 1000 IU/m2 PEG-Asparaginase intravenously is related to phenotype and genotype and predicts outcome. These results suggest that children with ALL with a poor clinical response to PEG-Asparaginase might benefit from a more intensive antileukemic therapy.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 315-320 ◽  
Author(s):  
Chikako Ito ◽  
Masa-aki Kumagai ◽  
Atsushi Manabe ◽  
Elaine Coustan-Smith ◽  
Susana C. Raimondi ◽  
...  

To determine the cellular basis for the excellent clinical outcome of hyperdiploid acute lymphoblastic leukemia (ALL), defined by a modal chromosome number of 51 to 65, we assessed the growth potential of leukemic cells from 129 children with newly diagnosed ALL. Flow cytometric analysis was used to compare leukemic cell recoveries at the beginning and at the end of 7-day cultures on allogeneic bone marrow–derived stromal layers. The median percentage of cell recovery after culture was 91% (range, <1% to 550%). Among the 25 hyperdiploid cases, only two had cell recoveries above the median value, compared with 63 of 104 cases with different ploidies (P< .001); 21 had recoveries within the first quartile, in contrast to only 12 of the 104 other cases. Cell recoveries in the 16 cases with duplications of chromosomes 4 and 10, a feature previously associated with a superior outcome, were all within the first quartile. Flow cytometric studies indicated that rapid induction of apoptosis was the underlying cause of low cell recoveries in cases with hyperdiploidy. The demise of hyperdiploid cells on stroma was not due to failure to adhere with stromal elements (as shown by electron microscopy) or to deficiencies of interleukin-1 (IL-1), IL-2, IL-3, IL-4, IL-6, IL-7, IL-11, stem-cell factor, interferon- (IFN-), tumor necrosis factor- (TNF-), or to combinations of these cytokines. Inactivation of IL-4, IFN- and TNF-, which if secreted by stromal layers could be toxic to ALL cells, failed to improve the survival of hyperdiploid blasts. We conclude that leukemic cells bearing 51 to 65 chromosomes have a marked propensity to undergo apoptosis. The stringent survival requirements of these cells, together with their potentially higher sensitivity to antileukemic drugs, may well account for the high cure rates achieved in patients with this form of ALL.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 2900-2907 ◽  
Author(s):  
Asaf Spiegel ◽  
Orit Kollet ◽  
Amnon Peled ◽  
Loya Abel ◽  
Arnon Nagler ◽  
...  

Abstract The mechanisms governing migration and extramedullary dissemination of leukemic cells remain obscure. In this study the migration and in vivo homing to the bone marrow of nonobese diabetic severe combined immunodeficient (NOD/SCID) mice injected with human precursor-B acute lymphoblastic leukemia (ALL) cells in comparison to normal CD34+ progenitors (both cord blood and mobilized peripheral blood) was investigated. Although migration and homing of both cell populations was dependent on stromal cell-derived factor 1 (SDF-1)/CXCR4 interactions, major differences in receptor expression as well as the migratory capacity toward various concentrations of SDF-1 were found. Furthermore, unlike normal CD34+ progenitors, in vivo homing of the leukemic cells was superior when recipient NOD/SCID mice were not irradiated prior to transplantation. In addition, we report differences in the adhesion molecules activated following SDF-1 stimulation, documenting a major role for very late antigen 4 (VLA-4), but not VLA-5 and lymphocyte function-associated antigen-1 (LFA-1), in homing of precursor-B ALL cells. Interestingly, Toxin-B and pertussis toxin inhibited the homing of the leukemic cells but not that of normal CD34+ progenitors or normal CD10+/CD19+ precursor-B cells, revealing differences in CXCR4 signaling pathways that are based on changes that acquired by the leukemic cells. Altogether, our data provide new insights into different SDF-1–induced signaling, activation, and consequent motility between normal CD34+ and precursor-B ALL progenitors, which may lead to improved clinical protocols. (Blood. 2004;103: 2900-2907)


Sign in / Sign up

Export Citation Format

Share Document