Therapeutic approaches to human immunodeficiency virus: Structural studies on G-protein-coupled receptors

1997 ◽  
Vol 76 (1-3) ◽  
pp. 135-139 ◽  
Author(s):  
Garland R. Marshall
2007 ◽  
Vol 159 (2) ◽  
pp. 194-205 ◽  
Author(s):  
Christian Klammt ◽  
Daniel Schwarz ◽  
Nora Eifler ◽  
Andreas Engel ◽  
Jacob Piehler ◽  
...  

2008 ◽  
Vol 89 (12) ◽  
pp. 3126-3136 ◽  
Author(s):  
Nobuaki Shimizu ◽  
Atsushi Tanaka ◽  
Atsushi Oue ◽  
Takahisa Mori ◽  
Chatchawann Apichartpiyakul ◽  
...  

Various G protein-coupled receptors (GPCRs) have the potential to work as co-receptors for human and simian immunodeficiency virus (HIV/SIV). HIV/SIV co-receptors have several tyrosines in their extracellular N-terminal region (NTR) as a common feature. However, the domain structure of the NTR that is critical for GPCRs to have co-receptor activity has not been identified. Comparative studies of different HIV/SIV co-receptors are an effective way to clarify the domain. These studies have been carried out only for the major co-receptors, CCR5 and CXCR4. A chemokine receptor, D6, has been shown to mediate infection of astrocytes with HIV-1. Recently, it was also found that an orphan GPCR, GPR1, and a formyl peptide receptor, FPRL1, work as potent HIV/SIV co-receptors in addition to CCR5 and CXCR4. To elucidate more about the domain of the NTR critical for HIV/SIV co-receptor activity, this study analysed the effects of mutations in the NTR on the co-receptor activity of D6, FPRL1 and GPR1 in addition to CCR5. The results identified a number of tyrosines that are indispensable for the activity of these co-receptors. The number and positions of those tyrosines varied among co-receptors and among HIV-1 strains. Moreover, it was found that a small domain of a few amino acids containing a tyrosine is critical for the co-receptor activity of GPR1. These findings will be useful in elucidating the mechanism that allows GPCRs to have the potential to act as HIV/SIV co-receptors.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1165-1173
Author(s):  
Xiyun Deng ◽  
Hirotsugu Ueda ◽  
Shao Bo Su ◽  
Wanghua Gong ◽  
Nancy M. Dunlop ◽  
...  

Because envelope gp120 of various strains of human immunodeficiency virus type 1 (HIV-1) downregulates the expression and function of a variety of chemoattractant receptors through a process of heterologous desensitization, we investigated whether epitopes derived from gp120 could mimic the effect. A synthetic peptide domain, designated F peptide, corresponding to amino acid residues 414-434 in the V4-C4 region of gp120 of the HIV-1 Bru strain, potently reduced monocyte binding and chemotaxis response to macrophage inflammatory protein 1β (MIP-1β) and stromal cell-derived factor 1 (SDF-1), chemokines that use the receptors CCR5 and CXCR4, respectively. Further study showed that F peptide by itself is an inducer of chemotaxis and calcium mobilization in human monocytes and neutrophils. In cross-desensitization experiments, among the numerous chemoattractants tested, only the bacterial chemotactic peptide fMLF, when used at high concentrations, partially attenuated calcium mobilization induced by F peptide in phagocytes, suggesting that this peptide domain might share a 7-transmembrane, G-protein–coupled receptor with fMLF. By using cells transfected with cDNAs encoding receptors that interact with fMLF, we found that F peptide uses an fMLF receptor variant, FPRL1, as a functional receptor. The activation of monocytes by F peptide resulted in downregulation of the cell surface expression of CCR5 and CXCR4 in a protein kinase C-dependent manner. These results demonstrate that activation of FPRL1 on human moncytes by a peptide domain derived from HIV-1 gp120 could lead to desensitization of cell response to other chemoattractants. This may explain, at least in part, the initial activation of innate immune responses in HIV-1–infected patients followed by immune suppression.


2019 ◽  
Vol 20 (19) ◽  
pp. 4937 ◽  
Author(s):  
Gallo ◽  
Navarro ◽  
Franco ◽  
Andreu

G-protein-coupled receptors associate into dimers/oligomers whose function is not well understood. One approach to investigate this issue is to challenge oligomerization by peptides replicating transmembrane domains and to study their effect on receptor functionality. The disruptor peptides are typically delivered by means of cell-penetrating vectors such as the human immunodeficiency virus (HIV) transcription trans-activation protein Tat. In this paper we report a cyclic, Tat-like peptide that significantly improves its linear analogue in targeting interreceptor sequences in the transmembrane space. The same cyclic Tat-like vector fused to a transmembrane region not involved in receptor oligomerization was totally ineffective. Besides higher efficacy, the cyclic version has enhanced proteolytic stability, as shown by trypsin digestion experiments.


2018 ◽  
Vol 47 (1) ◽  
pp. 377-397 ◽  
Author(s):  
Benjamin Stauch ◽  
Vadim Cherezov

G protein–coupled receptors (GPCRs) represent a large superfamily of membrane proteins that mediate cell signaling and regulate a variety of physiological processes in the human body. Structure-function studies of this superfamily were enabled a decade ago by multiple breakthroughs in technology that included receptor stabilization, crystallization in a membrane environment, and microcrystallography. The recent emergence of X-ray free-electron lasers (XFELs) has further accelerated structural studies of GPCRs and other challenging proteins by overcoming radiation damage and providing access to high-resolution structures and dynamics using micrometer-sized crystals. Here, we summarize key technology advancements and major milestones of GPCR research using XFELs and provide a brief outlook on future developments in the field.


Sign in / Sign up

Export Citation Format

Share Document