Glycolipids as potential binding sites for HIV: topology in the sperm plasma membrane in relation to the regulation of membrane fusion

1998 ◽  
Vol 41 (1-2) ◽  
pp. 233-253 ◽  
Author(s):  
B.M Gadella ◽  
D Hammache ◽  
G Piéroni ◽  
B Colenbrander ◽  
L.M.G van Golde ◽  
...  
1963 ◽  
Vol 19 (3) ◽  
pp. 501-518 ◽  
Author(s):  
Laura Hunter Colwin ◽  
Arthur L. Colwin

An earlier paper showed that in Saccoglossus the acrosomal tubule makes contact with the egg plasma membrane. The present paper includes evidence that the sperm and egg plasma membranes fuse to establish the single continuous zygote membrane which, consequently, is a mosaic. Contrary to the general hypothesis of Tyler, pinocytosis or phagocytosis plays no role in zygote formation. Contact between the gametes is actually between two newly exposed surfaces: in the spermatozoon, the surface was formerly the interior of the acrosomal vesicle; in the egg, it was membrane previously covered by the egg envelopes. The concept that all the events of fertilization are mediated by a fertilizin-antifertilizin reaction seems an oversimplification of events actually observed: rather, the evidence indicates that a series of specific biochemical interactions probably would be involved. Gamete membrane fusion permits sperm periacrosomal material to meet the egg cytoplasm; if an activating substance exists in the spermatozoon it probably is periacrosomal rather than acrosomal in origin. The contents of the acrosome are expended in the process of delivering the sperm plasma membrane to the egg plasma membrane. After these membranes coalesce, the sperm nucleus and other internal sperm structures move into the egg cytoplasm.


2002 ◽  
Vol 115 (10) ◽  
pp. 2053-2065
Author(s):  
Tummala Hemachand ◽  
Bagavathi Gopalakrishnan ◽  
Dinakar M. Salunke ◽  
Satish M. Totey ◽  
Chandrima Shaha

Glutathione S-transferases (GSTs) are enzymes that detoxify electrophilic compounds. Earlier studies from our laboratory showed that anti-GST antibodies interfered with the fertilising ability of spermatozoa from Capra hircus (goat) in vitro, suggesting that GSTs are localised at the cell surface. In this study, we provide evidence for the presence of GSTs of 24 kDa on the sperm plasma membrane attached by non-covalent interactions. The GST activity associated with the spermatozoal plasma membrane was significantly higher than the activity present in the plasma membranes of brain cells,hepatocytes, spleenocytes and ventriculocytes. Analysis of GST isoforms demonstrates the presence of GST Pi and Mu on the sperm plasma membranes. Both isoforms were able to bind to solubilised as well as intact zona pellucida(ZP) through their N-terminal regions but failed to bind to ZP once the oocytes were fertilised. Solubilised goat ZP separates into three components,one of which, the ZP3-like component, bound to sperm GSTs. High concentrations of anti-GST antibodies or solubilised ZP led to aggregation of sperm GSTs,resulting in the release of acrosin. In contrast, inhibition of sperm GST binding to ZP, by saturation of binding sites for sperm GSTs on the solubilised ZP using peptides designed from the N-terminii of GST Pi or Mu or blocking of binding sites for ZP on sperm GSTs with antibodies raised against the N-terminal GST peptides, inhibited essential prefertilisation changes in sperm. These data therefore demonstrate the strategic location of catalytically active defensive enzymes on the sperm surface that also act as zona-binding proteins. Therefore, sperm-surface GSTs serve as bifunctional molecules in a transcriptionally inactive cell whose requirement for cellular defense and economy of molecules that it can carry is greater than that of any somatic cell type.


1978 ◽  
Vol 40 (02) ◽  
pp. 212-218 ◽  
Author(s):  
P Massini ◽  
R Käser-Glanzmann ◽  
E F Lüscher

SummaryThe increase of the cytoplasmic Ca-concentration plays a central role in the initiation of platelet activation. Four kinds of movements of Ca-ions are presumed to occur during this process: a) Ca-ions liberated from membranes induce the rapid shape change, b) Vesicular organelles release Ca-ions into the cytoplasm which initiate the release reaction, c) The storage organelles called dense bodies, secrete their contents including Ca-ions to the outside during the release reaction, d) At the same time a rearrangement of the plasma membrane occurs, resulting in an increase in its permeability for Ca-ions as well as in an increase in the number of Ca-binding sites.Since most processes occurring during platelet activation are reversible, the platelet must be equipped with a mechanism which removes Ca-ions from the cytoplasm. A vesicular fraction obtained from homogenized platelets indeed accumulates Ca actively. This Ca- pump is stimulated by cyclic AMP and protein kinase; it may be involved in the recovery of platelets after activation.It becomes increasingly clear that the various manifestations of platelet activation are triggered by a rise in the cytoplasmic Ca2+-concentration. The evidence for this and possible mechanisms involved are discussed in some detail in the contributions by Detwiler et al. and by Gerrard and White to this symposium. In this article we shall discuss four different types of mobilization of Ca-ions which occur in the course of the activation of platelets. In addition, at least one transport step involved in the removal of Ca2+ must occur during relaxation of activated platelets.


2007 ◽  
Vol 27 (9) ◽  
pp. 3456-3469 ◽  
Author(s):  
Shaohui Huang ◽  
Larry M. Lifshitz ◽  
Christine Jones ◽  
Karl D. Bellve ◽  
Clive Standley ◽  
...  

ABSTRACT Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document