Sperm plasma-membrane-associated glutathione S-transferases as gamete recognition molecules

2002 ◽  
Vol 115 (10) ◽  
pp. 2053-2065
Author(s):  
Tummala Hemachand ◽  
Bagavathi Gopalakrishnan ◽  
Dinakar M. Salunke ◽  
Satish M. Totey ◽  
Chandrima Shaha

Glutathione S-transferases (GSTs) are enzymes that detoxify electrophilic compounds. Earlier studies from our laboratory showed that anti-GST antibodies interfered with the fertilising ability of spermatozoa from Capra hircus (goat) in vitro, suggesting that GSTs are localised at the cell surface. In this study, we provide evidence for the presence of GSTs of 24 kDa on the sperm plasma membrane attached by non-covalent interactions. The GST activity associated with the spermatozoal plasma membrane was significantly higher than the activity present in the plasma membranes of brain cells,hepatocytes, spleenocytes and ventriculocytes. Analysis of GST isoforms demonstrates the presence of GST Pi and Mu on the sperm plasma membranes. Both isoforms were able to bind to solubilised as well as intact zona pellucida(ZP) through their N-terminal regions but failed to bind to ZP once the oocytes were fertilised. Solubilised goat ZP separates into three components,one of which, the ZP3-like component, bound to sperm GSTs. High concentrations of anti-GST antibodies or solubilised ZP led to aggregation of sperm GSTs,resulting in the release of acrosin. In contrast, inhibition of sperm GST binding to ZP, by saturation of binding sites for sperm GSTs on the solubilised ZP using peptides designed from the N-terminii of GST Pi or Mu or blocking of binding sites for ZP on sperm GSTs with antibodies raised against the N-terminal GST peptides, inhibited essential prefertilisation changes in sperm. These data therefore demonstrate the strategic location of catalytically active defensive enzymes on the sperm surface that also act as zona-binding proteins. Therefore, sperm-surface GSTs serve as bifunctional molecules in a transcriptionally inactive cell whose requirement for cellular defense and economy of molecules that it can carry is greater than that of any somatic cell type.

1989 ◽  
Vol 109 (3) ◽  
pp. 1257-1267 ◽  
Author(s):  
D R Tulsiani ◽  
M D Skudlarek ◽  
M C Orgebin-Crist

During the course of a study of glycoprotein processing mannosidases in the rat epididymis, we have made an intriguing discovery regarding the presence of a novel alpha-D-mannosidase on the rat sperm plasma membranes. Unlike the sperm acrosomal "acid" mannosidase which has a pH optimum of 4.4, the newly discovered alpha-D-mannosidase has a pH optimum of 6.2, and 6.5 when assayed in sperm plasma membranes and intact spermatozoa, respectively. In addition, the two enzymes show different substrate specificity. The acrosomal alpha-D-mannosidase is active mainly towards synthetic substrate, p-nitrophenyl alpha-D-mannopyranoside, whereas the sperm plasma membrane alpha-D-mannosidase shows activity mainly towards mannose-containing oligosaccharides. Evidence is presented which suggest that the sperm plasma membrane alpha-D-mannosidase is different from several processing mannosidases previously characterized from the rat liver. The newly discovered alpha-D-mannosidase appears to be an intrinsic plasma membrane component, since washing of the purified membranes with buffered 0.4 M NaCl did not release the enzyme in soluble form. The enzyme requires nonionic detergent (Triton X-100) for complete solubilization. The enzyme is activated by Co2+ and Mn2+. However, Cu2+ and Zn2+ are potent inhibitors of the sperm plasma membrane alpha-D-mannosidase. At a concentration of 0.1 mM, these divalent cations caused nearly complete inactivation of the sperm enzyme. In addition methyl-alpha-D-mannoside, methyl-alpha-D-glucoside, mannose, 2-deoxy-D-glucose, and D-mannosamine are inhibitors of the sperm surface alpha-D-mannosidase. The physiological role of the newly discovered enzyme is not yet known. Several published reports in three species, including the rat, suggest that the sperm surface alpha-D-mannosidase may have a role in binding to mannose-containing saccharides presumably present on the zona pellucida.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 259-270
Author(s):  
Stephen J. Gaunt

The rat sperm surface antigen 2D6, located over the entire surface of the spermatozoon, is shown by use of a monoclonal antibody in indirect immunofluorescence experiments to spread laterally over the surface of the egg after fusion of sperm and egg plasma membranes at fertilization. Freshly fertilized eggs, obtained from superovulated rats 14h after hCG injection, showed the 2D6 antigen to have spread in a gradient over a discrete fan-shaped area of the egg surface anterior to the protruding sperm tail. Eggs at a later stage of sperm incorporation, obtained 20 h after hCG injection, snowed that the spread of antigen had extended to cover most or all of their surfaces. By 40 h after hCG injection, the approximate time that fertilized eggs cleaved to form 2-cell embryos, most of the 2D6 antigen had been lost from the cell surface. Fertilized eggs, but not unfertilized eggs or 2-cell embryos, were lysed by 2D6 monoclonal antibody in the presence of guinea pig complement. A model for sperm-egg fusion is presented to account for the observed pattern of spreading shown by the 2D6 antigen. The possible role of sperm antigens on the egg surface is discussed.


1996 ◽  
Vol 109 (10) ◽  
pp. 2461-2469 ◽  
Author(s):  
T. Nagasaki ◽  
G.G. Gundersen

We reported earlier that isolated plasma membranes trigger a number of responses comprising contact inhibition of motility, including loss of oriented detyrosinated microtubules (Glu MTs) from the lamella of motile fibroblasts. In this study, we show that the membranes trigger this loss of Glu MTs, not by binding to cells, but by removing an essential component from the medium necessary to maintain oriented Glu MTs. Preincubation of membranes with medium containing serum followed by removal of the membranes by sedimentation rendered the membrane-treated medium capable of triggering the loss of oriented Glu MTs. Membrane activity was inhibited by high concentrations of serum and removal of serum from medium triggered the loss of oriented Glu MTs similar to that triggered by membranes. These results suggest that the membranes trigger the loss of Glu MTs by inactivating factors in serum that are required for the maintenance of oriented Glu MTs. By fractionating serum, we have identified lysophosphatidic acid (LPA) as the principal serum factor that is responsible for supporting oriented Glu MTs. The activity of LPA to maintain oriented Glu MTs upon serum withdrawal was half maximal at 100 nM and no activity was observed with structurally related phospholipids. Serum LPA levels were sufficient to account for the ability of serum to support oriented Glu MTs. Enzymatic degradation of serum LPA strongly reduced the ability of serum to support oriented Glu MTs. That membranes degrade LPA was shown by the ability of membranes to block LPA's ability to maintain oriented Glu MTs, and by direct measurement of the loss of radiolabeled LPA after incubation with membranes in vitro. These results show that isolated plasma membranes trigger the loss of Glu MTs from the lamella of motile cells by degrading serum LPA. Coupled with earlier results showing that membranes trigger a number of contact inhibition responses, our data suggest a new model for contact inhibition of motility in which local degradation of LPA and/or interference with LPA-stimulated signalling pathways initiates a contact inhibition response in colliding cells.


Blood ◽  
1982 ◽  
Vol 60 (3) ◽  
pp. 583-594 ◽  
Author(s):  
N Dainiak ◽  
CM Cohen

Abstract In order to examine the contribution of cell surface materials to erythroid burst-promoting activity (BPA), we separated media conditioned by a variety of human cell types into pellets and supernatants by centrifugation. When added to serum-restricted cultures of nonadherent human marrow cells, pellets contained about half of the total stimulatory activity. Freeze-fracture electron microscopy of the pellets revealed the presence of unilamellar membrane vesicles ranging from 0.10 to 0.40 microM in diameter. The amount of BPA in culture increased with added vesicle concentration in a saturable fashion. Preparation of leukocyte conditioned medium (LCM) from 125I-wheat germ agglutinin labeled cells and studies comparing the glycoprotein composition of vesicles with that of leukocyte plasma membranes suggest that LCM-derived vesicles are of plasma membrane origin. Moreover, partially purified leukocyte plasma membrane preparations also contained BPA. While disruption of vesicles by freezing/thawing and hypotonic lysis did not alter BPA, heat, trypsin, or pronase treatment removed greater than 65% of BPA, implying that vesicle surface rather than intravesicular molecules express BPA. Results of BPA assays performed in two-layer clots indicated that proximity to target cells is required for vesicle BPA expression. We conclude that membrane vesicles spontaneously shed from cell surfaces may be important regulators of erythroid burst proliferation in vitro.


1963 ◽  
Vol 19 (3) ◽  
pp. 501-518 ◽  
Author(s):  
Laura Hunter Colwin ◽  
Arthur L. Colwin

An earlier paper showed that in Saccoglossus the acrosomal tubule makes contact with the egg plasma membrane. The present paper includes evidence that the sperm and egg plasma membranes fuse to establish the single continuous zygote membrane which, consequently, is a mosaic. Contrary to the general hypothesis of Tyler, pinocytosis or phagocytosis plays no role in zygote formation. Contact between the gametes is actually between two newly exposed surfaces: in the spermatozoon, the surface was formerly the interior of the acrosomal vesicle; in the egg, it was membrane previously covered by the egg envelopes. The concept that all the events of fertilization are mediated by a fertilizin-antifertilizin reaction seems an oversimplification of events actually observed: rather, the evidence indicates that a series of specific biochemical interactions probably would be involved. Gamete membrane fusion permits sperm periacrosomal material to meet the egg cytoplasm; if an activating substance exists in the spermatozoon it probably is periacrosomal rather than acrosomal in origin. The contents of the acrosome are expended in the process of delivering the sperm plasma membrane to the egg plasma membrane. After these membranes coalesce, the sperm nucleus and other internal sperm structures move into the egg cytoplasm.


1997 ◽  
Vol 152 (3) ◽  
pp. 407-412 ◽  
Author(s):  
M Montiel ◽  
M C Caro ◽  
E Jiménez

Angiotensin II (Ang II) provokes rapid internalisation of its receptor from plasma membranes in isolated rat hepatocytes. After 10 min stimulation with Ang II, plasma membrane lost about 60% of its 125I-Ang II-binding capacity. Internalisation was blocked by phenylarsine oxide (PhAsO), whereas okadaic acid, which markedly reduced the sustained phase of calcium mobilization, did not have a preventive effect on Ang II–receptor complex sequestration. These data suggest that Ang II receptor internalisation is probably independent of a phosphorylation/dephosphorylation cycle of critical serine/threonine residues in the receptor molecule. To establish a relationship between sequestration of the Ang II receptor and the physical properties of the Ang II-binding sites, 125I-Ang II–receptor complex profiles were analysed by isoelectric focusing. In plasma membrane preparations two predominant Ang II-binding sites, migrating to pI 6·8 and 6·5 were found. After exposure to Ang II, cells lost 125I-Ang II-binding capacity to the Ang II–receptor complex migrating at pI 6·8 which was prevented in PhAsO-treated cells. Pretreatment of hepatocytes with okadaic acid did not modify Ang II–receptor complex profiles, indicating that the binding sites corresponding to pI 6·5 and pI 6·8 do not represent a phosphorylated and/or non-phosphorylated form of the Ang II receptor. The results show that the Ang II–receptor complex isoform at pI 6·8 represents a functional form of the type-1 Ang II receptor. Further studies are necessary to identify the Ang II-related nature of the binding sites corresponding to pI 6·5. Journal of Endocrinology (1997) 152, 407–412


2016 ◽  
Vol 28 (2) ◽  
pp. 224
Author(s):  
L. Myles ◽  
C. Durfey ◽  
P. Ryan ◽  
S. Willard ◽  
J. Feugang

Migration and interactions of mammalian gametes occur in deep body tissues after mating, rendering difficult any in situ noninvasive evaluation of their performances with current methods. In our effort to develop an effective and real-time in vivo imaging approach, we have successfully labelled porcine gametes with self-illuminating bioluminescent and red-shifted quantum dot nanoparticles (QD) in our previous studies (Feugang et al. 2012 J. Nanobiotechnol. 10, 45; Feugang et al. 2015, J. Nanobiotechnol. 13, 38). The present effort aimed at investigating whether QD could be incorporated into spermatozoa through induced in vitro capacitation, which increases sperm plasma membrane fluidity. Fresh extended boar semen was placed on top of a Percoll gradient and centrifuged. Purified motile spermatozoa were collected and washed with pre-warmed PBS. Pelleted spermatozoa were resuspended in the modified Tris-buffered medium with BSA fraction-V (1 mg mL–1; modified Tween medium B with milk powder and BSA). Sperm aliquots (108) were supplemented or not (control) with QD only (QD+; 1 nM), QD+caffeine (2 mM), or QD+heparin (10 µg mL–1); with caffeine and heparin being used as routine capacitant agents in fertilization media. All aliquots were incubated at 38.5°C, under 5% CO2 for 0.5, 1, or 3 h. Spermatozoa were then analysed for motility characteristics and imaged for confirmation of QD-sperm interactions (bioluminescence emission) and localization (transmission electron microscope; TEM). Motility data of 5 replicates were analysed with ANOVA-2, and P < 0.05 was set as threshold of significance. Total sperm motility (TSM) significantly improved with the presence of either or both QDs and capacitant agents after 0.5 and 1 h incubations. With exception of the QD+heparin, all other groups had significantly decreased TSM after 3 h of incubation, when compared with TSM at 0.5 and 1 h. Higher proportions of progressive and rapid (≥45 µm s–1) spermatozoa were observed in the presence of both capacitant agents (P < 0.05), and only QD+heparin maintained greater proportions after 3 h. Sperm straight-line velocity significantly increased in the QD+caffeine at 0.5 h and in both QD+caffeine and QD+heparin thereafter. Sperm straightness data were increased by both caffeine and heparin during incubations. Strong bioluminescence signals were observed in spermatozoa incubated with QDs compared to the background signal seen in the control group. The TEM images revealed consistent surface membrane attachment of QDs in all QD+ groups, whereas transmembrane and intra-spermatic localizations were visible in both QD+caffeine and QD+heparin groups. We concluded that supplementations of medium containing QDs with caffeine or heparin allow the crossing of sperm plasma membrane by QD. No toxic effect of QD on sperm motility was observed, which confirmed our previous report using a similar ratio of QDs over spermatozoa. Exploration of efficient incorporation of QD into spermatozoa as a promising approach for noninvasive molecular imaging is still ongoing, as well as further sperm viability assessments. Supported by the NIH grant #5T35OD010432 and USDA-ARS Biophotonics Initiative grant #58–6402–3-0120.


1980 ◽  
Vol 191 (3) ◽  
pp. 743-760 ◽  
Author(s):  
Richard J. Pietras ◽  
Clara M. Szego

To assess the subcellular distribution of oestrogen-binding components in their native state, plasma membrane and other cell fractions were prepared from hepatocytes in the absence of [3H]oestradiol-17β. Cells from livers of ovariectomized rats were disrupted, with submaximal homogenization in buffered isotonic sucrose with CaCl2 and proteinase inhibitor, and fractionated by using isotonic media. Fractions were characterized by determinations of enzyme activities, biochemical constituents and ligand binding. Specific binding of 2nm-[3H]oestradiol-17β to intact cells and their fractions was detemined after equilibration for 1.5h at 4°C. More than 92% of the radioactivity from representative preparations was verified as authentic oestradiol by thin-layer chromatography. Activities of plasma-membrane marker enzymes as well as binding sites for oestrogen and for wheat germ agglutinin were present principally in particulate fractions, rather than in 105000g-supernatant fractions. However, by using alternative homogenization procedures (i.e. hypotonic media), known to fragment and strip structural components, oestradiol-binding sites and activities of plasma-membrane marker enzymes were distributed predominantly into cytosol. By using the more conservative procedures, plasma membranes of low (ρ=1.13–1.16) and high (ρ=1.16–1.18) density were purified from crude nuclear fractions. A second low-density subfraction of plasma membrane was prepared from microsome-rich fractions. Activities of plasma-membrane marker enzymes were enriched to about 28 and four times that of the homogenate in plasma membranes of low and high density respectively. Binding sites for wheat germ agglutinin and oestradiol were concentrated in low-density plasma membranes to 46–63 times that of the homogenate. Specific binding of oestrogen in low-density plasma membranes purified from crude nuclei was saturable, with an apparent association constant of 3.5nm. At saturation, such oestradiol receptors corresponded to 526fmol/mg of membrane protein. A Hill plot showed a moderate degree of positive co-operativity in the interaction of hormone with plasma membranes. Specific binding of [3H]oestradiol-17β was reduced by a 200-fold molar excess of unlabelled oestradiol-17β, oestriol or diethylstilbestrol, but not by oestradiol-17α, cortisol, testosterone or progesterone. Binding was also blocked by prior exposure of membranes to trypsin or to 60°C, but remained essentially undiminished by extraction of membranes with either hypotonic or high-salt buffers. Extraction with 0.1% (v/v) Triton X-100 partially solubilized the oestrogen-binding component(s) of plasma membranes. Particle-free extracts were resolved on 5–20% (w/v) sucrose density gradients with either 0.01m- or 0.4m-KCl, and the fractions were analysed by adsorption to hydroxyapatite. In low-salt gradients macromolecule-bound oestrogen sedimented at predominantly 7.4S and binding was 1560 times that of the homogenate. Under high-salt conditions oestradiol-binding activity occurred at both 3.6S and 4.9S.


1982 ◽  
Vol 30 (12) ◽  
pp. 1217-1227 ◽  
Author(s):  
L D Russell ◽  
R N Peterson ◽  
T A Russell

A simple method for ultrastructural localization of sperm surface antigens by direct visualization of bound antibodies is presented. Anti-sperm plasma membrane (ASPM) immunoglobulin (Ig) G, visualized in tissues treated with an osmium:ferrocyanide mixture, projected 11-13 nm from the surface and ASPM Fab fragments projected 8-10 nm from the surface. The density of IgG labeling, as subjectively estimated, corresponded to indirect immune fluorescein isothiocyanate, indirect immunoferritin, and sperm-vesicle labeling patterns. Agglutination of sperm vesicles and sperm were demonstrated and the linking antibody visualized. A second antibody on protein A directed against ASPM IgG made the immunologic tag more apparent and indicated, in disrupted sperm preparations, labeling of both sides of the plasma membrane. The method provides for easy and sensitive localization of sperm surface antigens at the ultrastructural level and is presently being used to localize specific sperm antigens.


2004 ◽  
Vol 18 (11) ◽  
pp. 2660-2671 ◽  
Author(s):  
Johanna A. Huhtakangas ◽  
Christopher J. Olivera ◽  
June E. Bishop ◽  
Laura P. Zanello ◽  
Anthony W. Norman

Abstract The steroid hormone 1α,25(OH)2-vitamin D3 (1,25D) regulates gene transcription through a nuclear receptor [vitamin D receptor (VDR)] and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDRmem). This study characterized the VDRmem present in a caveolae-enriched membrane fraction (CMF), a site of accumulation of signal transduction agents. Saturable and specific [3H]-1,25D binding in vitro was found in CMF of chick, rat, and mouse intestine; mouse lung and kidney; and human NB4 leukemia and rat ROS 17/2.8 osteoblast-like cells; in all cases the 1,25D KD binding dissociation constant = 1–3 nm. Our data collectively support the classical VDR being the VDRmem in caveolae: 1) VDR antibody immunoreactivity was detected in CMF of all tissues tested; 2) competitive binding of [3H]-1,25D by eight analogs of 1,25D was significantly correlated between nuclei and CMF (r2 = 0.95) but not between vitamin D binding protein (has a different ligand binding specificity) and CMF; 3) confocal immunofluorescence microscopy of ROS 17/2.8 cells showed VDR in close association with the caveolae marker protein, caveolin-1, in the plasma membrane region; 4) in vivo 1,25D pretreatment reduced in vitro [3H]-1,25D binding by 30% in chick and rat intestinal CMF demonstrating in vivo occupancy of the CMF receptor by 1,25D; and 5) comparison of [3H]-1,25D binding in VDR KO and WT mouse kidney tissue showed 85% reduction in VDR KO CMF and 95% reduction in VDR KO nuclear fraction. This study supports the presence of VDR as the 1,25D-binding protein associated with plasma membrane caveolae.


Sign in / Sign up

Export Citation Format

Share Document