bifunctional molecules
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 37)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Junzhuo Liao ◽  
Xueqing Nie ◽  
Ilona Unarta ◽  
Spencer Ericksen ◽  
Weiping Tang

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce ubiquitination and subsequent degradation of proteins via formation of ternary complexes between an E3 ubiquitin ligase and a target protein. Rational design of PROTACs requires accurate knowledge of the native configuration of the PROTAC induced ternary complex. This study demonstrates that native and non-native ternary complex poses can be distinguished based on pose occupancy time in MD, where native poses exhibit longer occupancy times than non-native ones at both room and higher temperatures. Candidate poses are generated by MD sampling and pre-ranked by the classic MM/GBSA method. A specific heating scheme is then applied to induce ternary pose departure, generating an occupancy score and temperature score reflecting pose occupancy time and fraction. The scoring approach enables identification of the native pose in all the test systems. Beyond providing a relative rank of hypothetical poses of a given ternary system, the method could also provide empirical guidance to whether a given ternary pose is likely a native one or not. The success of the method is in part attributed to the dynamic nature of the pose departure analysis which accounts for solute entropic effects, typically neglected in the faster static pose scoring methods, while solute entropic contributions play a greater role in protein-protein interactions than in protein-ligand systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiuxiu Lu ◽  
Venkata R. Sabbasani ◽  
Vasty Osei-Amponsa ◽  
Christine N. Evans ◽  
Julianna C. King ◽  
...  

AbstractProteasome substrate receptor hRpn13 is a promising anti-cancer target. By integrated in silico and biophysical screening, we identified a chemical scaffold that binds hRpn13 with non-covalent interactions that mimic the proteasome and a weak electrophile for Michael addition. hRpn13 Pru domain binds proteasomes and ubiquitin whereas its DEUBAD domain binds deubiquitinating enzyme UCHL5. NMR revealed lead compound XL5 to interdigitate into a hydrophobic pocket created by lateral movement of a Pru β-hairpin with an exposed end for Proteolysis Targeting Chimeras (PROTACs). Implementing XL5-PROTACs as chemical probes identified a DEUBAD-lacking hRpn13 species (hRpn13Pru) present naturally with cell type-dependent abundance. XL5-PROTACs preferentially target hRpn13Pru, causing its ubiquitination. Gene-editing and rescue experiments established hRpn13 requirement for XL5-PROTAC-triggered apoptosis. These data establish hRpn13 as an anti-cancer target for multiple myeloma and introduce an hRpn13-targeting scaffold that can be optimized for preclinical trials against hRpn13Pru-producing cancer types.


2021 ◽  
Vol 22 (23) ◽  
pp. 12858
Author(s):  
Friedrich Hahn ◽  
Stuart T. Hamilton ◽  
Christina Wangen ◽  
Markus Wild ◽  
Jintawee Kicuntod ◽  
...  

Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.


2021 ◽  
Author(s):  
Junzhuo Liao ◽  
Xueqing Nie ◽  
Ilona Unarta ◽  
Spencer Ericksen ◽  
Weiping Tang

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that can induce the ubiquitination of targeted proteins via the formation of ternary complexes between an E3 ubiquitin ligase and a target protein. The poly-ubiquitinated target protein will be escorted to the proteasome for degradation. Rational design of PROTACs require knowledge of an accurate configuration of the PROTAC induced ternary complex. This study demonstrates that native ternary poses can be distinguished by scoring candidate poses based on the pose residence time. The scoring is essentially heat-and-dissociate trials of candidate poses sampled by MD and pre-ranked by the classic MM/GBSA method. It is practical, simple to use and self-intuitive, relying on the observation that the assumed more stable native crystal ternary poses maintained a longer residence time than non-native ones at both room and higher temperatures. A time score and temperature score were generated from multiple replicate trajectories. These scores were able to correctly identify the native pose from non-native ones in all the systems examined. The absolute numbers were comparable across different systems in all currently available VHL and CRBN-containing ternary crystal structures. Therefore, it is also possible to provide an empirical criteria for unresolved ternary structures that under the conditions of this study. If a ternary pose is stable up to over a certain threshold score, it is likely a native pose. The success of the method is in part attributed to the dynamic nature of the pose change analysis which naturally involves entropic effects, one that is intrinsically unavailable with faster static scoring methods that consider molecular mechanical energy only. Protein-protein binding entropy is much more significant than in protein-ligands binding. The success is also attributed to the fact that the protein structures themselves were all stable in the short heating trials.


2021 ◽  
Author(s):  
Junzhuo Liao ◽  
Xueqing Nie ◽  
Ilona Unarta ◽  
Spencer Ericksen ◽  
Weiping Tang

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that can induce the ubiquitination of targeted proteins via the formation of ternary complexes between an E3 ubiquitin ligase and a target protein. The poly-ubiquitinated target protein will be escorted to the proteasome for degradation. Rational design of PROTACs require knowledge of an accurate configuration of the PROTAC induced ternary complex. This study demonstrates that native ternary poses can be distinguished by scoring candidate poses based on the pose residence time. The scoring is essentially heat-and-dissociate trials of candidate poses sampled by MD and pre-ranked by the classic MM/GBSA method. It is practical, simple to use and self-intuitive, relying on the observation that the assumed more stable native crystal ternary poses maintained a longer residence time than non-native ones at both room and higher temperatures. A time score and temperature score were generated from multiple replicate trajectories. These scores were able to correctly identify the native pose from non-native ones in all the systems examined. The absolute numbers were comparable across different systems in all currently available VHL and CRBN-containing ternary crystal structures. Therefore, it is also possible to provide an empirical criteria for unresolved ternary structures that under the conditions of this study. If a ternary pose is stable up to over a certain threshold score, it is likely a native pose. The success of the method is in part attributed to the dynamic nature of the pose change analysis which naturally involves entropic effects, one that is intrinsically unavailable with faster static scoring methods that consider molecular mechanical energy only. Protein-protein binding entropy is much more significant than in protein-ligands binding. The success is also attributed to the fact that the protein structures themselves were all stable in the short heating trials.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6166
Author(s):  
Serge Ismael Zida ◽  
Yue-Der Lin ◽  
Yit Lung Khung

While the sonochemical grafting of molecules on silicon hydride surface to form stable Si–C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si–H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si–C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author’s knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.


2021 ◽  
Author(s):  
Wesley Wei Wang ◽  
Li-Yun Chen ◽  
Jacob Wozniak ◽  
Appaso M Jadhav ◽  
Hayden Anderson ◽  
...  

Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often non-specific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-kB subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible, and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and will enable the exploration of targeted acetylation in basic biological and therapeutic contexts.


2021 ◽  
Author(s):  
Xiuxiu Lu ◽  
Venkata R. Sabbasani ◽  
Vasty Osei-Amponsa ◽  
Christine N. Evans ◽  
Julianna C. King ◽  
...  

Proteasome substrate receptor hRpn13 is a promising anti-cancer target. By integrated in silico and biophysical screening, we identified a chemical scaffold that binds hRpn13 with non-covalent interactions that mimic the proteasome and a weak electrophile for Michael addition. hRpn13 Pru domain binds proteasomes and ubiquitin whereas its DEUBAD domain binds deubiquitinating enzyme UCHL5. NMR revealed lead compound XL5 to interdigitate into a hydrophobic pocket created by lateral movement of a Pru β-hairpin with an exposed end for Proteolysis Targeting Chimeras (PROTACs). Implementing XL5-PROTACs as chemical probes identified a DEUBAD-lacking hRpn13 species (hRpn13Pru) present naturally with cell type-dependent abundance. XL5-PROTACs preferentially target hRpn13Pru, causing its ubiquitination. Gene-editing and rescue experiments established hRpn13 requirement for XL5-PROTAC-triggered apoptosis and increased p62 levels. These data establish hRpn13 as an anti-cancer target for multiple myeloma and introduce an hRpn13-targeting scaffold that can be optimized for preclinical trials against hRpn13Pru-producing cancer types.


2021 ◽  
Vol 9 ◽  
Author(s):  
Aleša Bricelj ◽  
Christian Steinebach ◽  
Robert Kuchta ◽  
Michael Gütschow ◽  
Izidor Sosič

Proteolysis-targeting chimeras (PROTACs) have received tremendous attention as a new and exciting class of therapeutic agents that promise to significantly impact drug discovery. These bifunctional molecules consist of a target binding unit, a linker, and an E3 ligase binding moiety. The chemically-induced formation of ternary complexes leads to ubiquitination and proteasomal degradation of target proteins. Among the plethora of E3 ligases, only a few have been utilized for the novel PROTAC technology. However, extensive knowledge on the preparation of E3 ligands and their utilization for PROTACs has already been acquired. This review provides an in-depth analysis of synthetic entries to functionalized ligands for the most relevant E3 ligase ligands, i.e. CRBN, VHL, IAP, and MDM2. Less commonly used E3 ligase and their ligands are also presented. We compare different preparative routes to E3 ligands with respect to feasibility and productivity. A particular focus was set on the chemistry of the linker attachment by discussing the synthetic opportunities to connect the E3 ligand at an appropriate exit vector with a linker to assemble the final PROTAC. This comprehensive review includes many facets involved in the synthesis of such complex molecules and is expected to serve as a compendium to support future synthetic attempts towards PROTACs.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 607
Author(s):  
Soonsil Hyun ◽  
Dongyun Shin

Neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease, are a class of diseases that lead to dysfunction of cognition and mobility. Aggregates of misfolded proteins such as β-amyloid, tau, α-synuclein, and polyglutamates are known to be among the main causes of neurodegenerative diseases; however, they are considered to be some of the most challenging drug targets because they cannot be modulated by conventional small-molecule agents. Recently, the degradation of target proteins by small molecules has emerged as a new therapeutic modality and has garnered the interest of the researchers in the pharmaceutical industry. Bifunctional molecules that recruit target proteins to a cellular protein degradation machinery, such as the ubiquitin–proteasome system and autophagy–lysosome pathway, have been designed. The representative targeted protein degradation technologies include molecular glues, proteolysis-targeting chimeras, hydrophobic tagging, autophagy-targeting chimeras, and autophagosome-tethering compounds. Although these modalities have been shown to degrade many disease-related proteins, such technologies are expected to be potentially important for neurogenerative diseases caused by protein aggregation. Herein, we review the recent progress in chemical-mediated targeted protein degradation toward the discovery of drugs for neurogenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document