Convergence and steady-state analysis of a variable step-size NLMS algorithm

2003 ◽  
Vol 83 (6) ◽  
pp. 1255-1273 ◽  
Author(s):  
Ahmed I. Sulyman ◽  
Azzedine Zerguine
2019 ◽  
Vol 67 (6) ◽  
pp. 405-414 ◽  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Hui Guo ◽  
Bin Gao ◽  
...  

Active noise control (ANC) is used to reduce undesirable noise, particularly at low frequencies. There are many algorithms based on the least mean square (LMS) algorithm, such as the filtered-x LMS (FxLMS) algorithm, which have been widely used for ANC systems. However, the LMS algorithm cannot balance convergence speed and steady-state error due to the fixed step size and tap length. Accordingly, in this article, two improved LMS algorithms, namely, the iterative variable step-size LMS (IVS-LMS) and the variable tap-length LMS (VT-LMS), are proposed for active vehicle interior noise control. The interior noises of a sample vehicle are measured and thereby their frequency characteristics. Results show that the sound energy of noise is concentrated within a low-frequency range below 1000 Hz. The classical LMS, IVS-LMS and VT-LMS algorithms are applied to the measured noise signals. Results further suggest that the IVS-LMS and VT-LMS algorithms can better improve algorithmic performance for convergence speed and steady-state error compared with the classical LMS. The proposed algorithms could potentially be incorporated into other LMS-based algorithms (like the FxLMS) used in ANC systems for improving the ride comfort of a vehicle.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4153 ◽  
Author(s):  
Adeel Feroz Mirza ◽  
Majad Mansoor ◽  
Qiang Ling ◽  
Muhammad Imran Khan ◽  
Omar M. Aldossary

In this article, a novel maximum power point tracking (MPPT) controller for the fast-changing irradiance of photovoltaic (PV) systems is introduced. Our technique utilizes a modified incremental conductance (IC) algorithm for the efficient and fast tracking of MPP. The proposed system has a simple implementation, fast tracking, and achieved steady-state oscillation. Traditional MPPT techniques use a tradeoff between steady-state and transition-state parameters. The shortfalls of various techniques are studied. A comprehensive comparative study is done to test various existing techniques against the proposed technique. The common parameters discussed in this study are fast convergence, efficiency, and reduced oscillations. The proposed method successfully addresses these issues and improves the results significantly by using a proportional integral deferential (PID) controller with a genetic algorithm (GA) to predict the variable step size of the IC-based MPPT technique. The system is designed and tested against the perturbation and observation (P&O)-based MPPT technique. Our technique effectively detects global maxima (GM) for fast-changing irradiance due to the adopted GA-based tuning of the controller. A comparative analysis of the results proves the superior performance and capabilities to track GM in fewer iterations.


Author(s):  
Y. Munandar K. ◽  
Eka Firmansyah ◽  
Suharyanto Suharyanto

Maximum power point tracking (MPPT) algorithm seek the MPP to maximize delivered the power of a photovoltaic panel. From several MPPT algorithms, the perturb and observe (P&O) algorithm is commonly used algorithm because of its easy implementation. However, it is not the most efficient algorithm due to the perturbation step is fixed. By using the high step size, the MPP tracking became fast but there would be a high steady state error and by using the low step size, there would be less steady state error but the MPP tracking became slow. Resulting in a waste of energy in steady-state conditions when the working point passes through the MPP and poorly dynamic performance indicated when the setpoint changes due to solar irradiation changes. In this paper, a modification variable step-size of the P&O algorithm has been proposed with setting the step-size automatically at each point of work. To validate the concept of modification variable step-size, simulation using PSIM has been carried out. Compared with the conventional P&O method with fixed step-size, the proposed modified P&O method can increase tracking speed and efficiency in the system.


Sign in / Sign up

Export Citation Format

Share Document