An existence result for coalition-proof equilibrium

1997 ◽  
Vol 57 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Nikolai S. Kukushkin
Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 464
Author(s):  
Jichao Wang ◽  
Ting Yu

In this paper, we study the singularly perturbed problem for the Schrödinger–Poisson equation with critical growth. When the perturbed coefficient is small, we establish the relationship between the number of solutions and the profiles of the coefficients. Furthermore, without any restriction on the perturbed coefficient, we obtain a different concentration phenomenon. Besides, we obtain an existence result.


Author(s):  
Fernando Farroni ◽  
Luigi Greco ◽  
Gioconda Moscariello ◽  
Gabriella Zecca

AbstractWe consider a Cauchy–Dirichlet problem for a quasilinear second order parabolic equation with lower order term driven by a singular coefficient. We establish an existence result to such a problem and we describe the time behavior of the solution in the case of the infinite–time horizon.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Jiali Yu ◽  
Wenhuo Su ◽  
Dongmei Xu

We consider the backwards topological property of pullback attractors for the nonautonomous MHD equations. Under some backwards assumptions of the nonautonomous force, it is shown that the theoretical existence result for such an attractor is derived from an increasing, bounded pullback absorbing and the backwards pullback flattening property. Meanwhile, some abstract results on the convergence of nonautonomous pullback attractors in asymptotically autonomous problems are established and applied to MHD equations.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 369-388 ◽  
Author(s):  
M. J. GARRIDO-ATIENZA ◽  
A. OGROWSKY ◽  
B. SCHMALFUSS

We investigate a random differential equation with random delay. First the non-autonomous case is considered. We show the existence and uniqueness of a solution that generates a cocycle. In particular, the existence of an attractor is proved. Secondly we look at the random case. We pay special attention to the measurability. This allows us to prove that the solution to the random differential equation generates a random dynamical system. The existence result of the attractor can be carried over to the random case.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Aibo Liu ◽  
Changchun Liu

We study an initial-boundary problem for a sixth order Cahn-Hilliard type equation, which arises in oil-water-surfactant mixtures. An existence result for the problem with a concentration dependent diffusional mobility in three space dimensions is presented.


2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Svatoslav Staněk

AbstractIn the first part, we investigate the singular BVP $$\tfrac{d} {{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u$$, u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where $$\mathcal{H}$$ is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems $$\tfrac{d} {{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)$$, u(0) = A, u(1) = B, $$\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0$$ where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.


Sign in / Sign up

Export Citation Format

Share Document