Torsional surface waves in a gradient-elastic half-space

Wave Motion ◽  
2000 ◽  
Vol 31 (4) ◽  
pp. 333-348 ◽  
Author(s):  
H.G. Georgiadis ◽  
I. Vardoulakis ◽  
G. Lykotrafitis
2017 ◽  
Vol 22 (2) ◽  
pp. 415-426
Author(s):  
M. Sethi ◽  
A. Sharma ◽  
A. Vasishth

AbstractThe present paper deals with the mathematical modeling of the propagation of torsional surface waves in a non-homogeneous transverse isotropic elastic half-space under a rigid layer. Both rigidities and density of the half-space are assumed to vary inversely linearly with depth. Separation of variable method has been used to get the analytical solutions for the dispersion equation of the torsional surface waves. Also, the effects of nonhomogeneities on the phase velocity of torsional surface waves have been shown graphically. Also, dispersion equations have been derived for some particular cases, which are in complete agreement with some classical results.


2020 ◽  
Vol 9 (2) ◽  
pp. 128-131
Author(s):  
Mahmoud M. Selim

This study is an attempt to show the impacts of free surface irregularity on the torsional surface waves propagating in heterogeneous, elastic half-space. The surface irregularity is taken in the parabolic form at the surface of the half-space. The governing equation and corresponding closed form solutions are derived. Then, the phase velocity of torsional surface waves is obtained analytically and the influences of surface irregularity are studied in detail. Numerical results analyzing the torsional surface waves propagation are discussed and presented graphically. The analytical solutions and numerical results reveal that, the surface irregularity and heterogeneity have notable effects on the torsional surface waves propagation in the elastic half-space. Since the Earth crust is heterogeneous medium with irregular surface, thus it is important to consider the effects of heterogeneity and surface irregularity on velocity of torsional surface waves propagating in the Earth medium.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


1964 ◽  
Vol 54 (2) ◽  
pp. 627-679
Author(s):  
David G. Harkrider

ABSTRACT A matrix formulation is used to derive integral expressions for the time transformed displacement fields produced by simple sources at any depth in a multilayered elastic isotropic solid half-space. The integrals are evaluated for their residue contribution to obtain surface wave displacements in the frequency domain. The solutions are then generalized to include the effect of a surface liquid layer. The theory includes the effect of layering and source depth for the following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter source also includes the effect of fault dimensions and rupture velocity. From these results we are able to show certain reciprocity relations for surface waves which had been previously proved for the total displacement field. The theory presented here lays the ground work for later papers in which theoretical seismograms are compared with observations in both the time and frequency domain.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 1980-1987
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

The propagation of Rayleigh type surface waves in a rotating elastic half-space of orthotropic type is studied under impedance boundary conditions. The secular equation is obtained explicitly using traditional methodology. A program in MATLAB software is developed to obtain the numerical values of the nondimensional speed of Rayleigh wave. The speed of Rayleigh wave is illustrated graphically against rotation rate, nondimensional material constants, and impedance boundary parameters.


Sign in / Sign up

Export Citation Format

Share Document