The effect of zeolitic textural properties on the catalytic activity in hydrocarbons oxidation

Author(s):  
F. Cavani ◽  
G. Giordano ◽  
M. Pedatell ◽  
F. Trifirò
2021 ◽  
Vol 21 (8) ◽  
pp. 4537-4543
Author(s):  
Byung Chan Kwon ◽  
Dohyung Kang ◽  
Seung Woo Lee ◽  
No-Kuk Park ◽  
Jang Hun Lee ◽  
...  

This study examined the effects of the porosity of catalytic bag-filter materials for applications to the SNCR (selective noncatalytic reduction)-SCR (selective catalytic reduction) hybrid process for highly treating nitrogen Oxides (NOx) in the exhaust gas of a combustion process. A V2O5/TiO2 catalyst was dispersed in a PTFE (poly-tetra-fluoro-ethylene) used as the catalytic bag-filter material to remove particulate matter and nitrogen oxides contained in the combustion exhaust gas. Macroporous alumina was added into a V2O5/TiO2-dispersed PTFE to improve the catalytic activity of V2O5/TiO2 dispersed in the PTFE material. In this study, the textural properties and denitrification performances of the V2O5/TiO2-dispersed PTFE materials were examined according to the addition of macro-porous alumina. When the denitrification catalyst was solely dispersed in the PTFE material, the catalyst inside the PTFE backbone had low gas-solid contact efficiency owing to the low porosity of the PTFE materials, resulting in low denitrification efficiency. On the other hand, the catalytic activity of V2O5/TiO2 dispersed inside the macro-porous PTFE material was significantly enhanced by adding macro-porous alumina into the PTFE matrix. The enhanced textural properties of the macro-porous PTFE material where V2O5/TiO2 was uniformly dispersed proved the facilitated diffusion of combustion exhaust gas into the PTFE material.


2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
S. Pérez-Rodríguez ◽  
G. García ◽  
L. Calvillo ◽  
V. Celorrio ◽  
E. Pastor ◽  
...  

Vulcan XC-72R-supported Fe catalysts have been synthesised for the electroreduction of CO2to high-added value products. Catalysts were obtained by the polyol method, using ethylene glycol as solvent and reducing agent. Prior to the metal deposition, Vulcan was subjected to different oxidation treatments in order to modify its surface chemistry and study its influence on the physicochemical and electrochemical properties of the catalysts, as well as on the product distribution. The oxidation treatments of the supports modify their textural properties, but do not affect significantly the physicochemical properties of catalysts. However, DEMS studies showed that the carbon support degradation, the distribution of products, and the catalytic activity toward the CO2electroreduction reaction depend significantly on the surface chemistry of the carbon support.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 804 ◽  
Author(s):  
Fernández ◽  
Fraile ◽  
García-Bordejé ◽  
Pires

Solketal is one of the most used glycerol-derived solvents. Its production via heterogeneous catalysis is crucial for avoiding important product losses typically found in the aqueous work-up in homogeneous catalysis. In this work, we present a study of the catalytic synthesis of solketal using sulfonated hydrothermal carbons (SHTC). They were prepared from glucose and cellulose resulting in different textural properties depending on the hydrothermal treatment conditions. The sulfonated hydrothermal carbons were also coated on a graphite microfiber felt (SHTC@GF). Thus, up to nine different solids were tested, and their activity was compared with commercial acidic resins. The solids presented very different catalytic activity, which did not correlate with their physical-chemical properties indicating that other aspects likely influence the transport of reactants and products to the catalytic surface. Additionally, the SHTC prepared from cellulose showed better reusability in batch reaction tests. This work also presents the first results for the production of solketal in a flow reactor, which opens the way to the use of SHTC@GF for this kind of reactions.


2021 ◽  
Vol 149 ◽  
pp. 106247
Author(s):  
Kanokwan Ngaosuwan ◽  
Waranya Chaiyariyakul ◽  
Onjira Inthong ◽  
Worapon Kiatkittipong ◽  
Doonyapong Wongsawaeng ◽  
...  

2004 ◽  
Vol 277 (1-2) ◽  
pp. 107-117 ◽  
Author(s):  
M. Hietikko ◽  
U. Lassi ◽  
K. Kallinen ◽  
A. Savimäki ◽  
M. Härkönen ◽  
...  

2017 ◽  
Vol 380 ◽  
pp. 151-160 ◽  
Author(s):  
Sara Faiz Hanna Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Maizatul Shima Shaharun ◽  
Duvvria Subbarao ◽  
Ahmed Elbagir

Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial to produce clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, a series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via an impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in a microactivity fixed-bed system at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance were strongly affected by the loading of the active site. Where, the catalytic activity, the methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14% and methanol selectivity of 92% was obtained over a Cu/ZnO-SBA-15 catalyst with a total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well dispersed active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.


1984 ◽  
Vol 22 (3) ◽  
pp. 299-304 ◽  
Author(s):  
S. Bernal ◽  
R. García ◽  
J.M. Rodríguez-Izquierdo ◽  
J.M. Trillo

2012 ◽  
Vol 66 (8) ◽  
Author(s):  
Sahar El-Molla ◽  
Laila Ali ◽  
Nabil Amin ◽  
Anwer Ebrahim ◽  
Hala Mahmoud

AbstractThe effects of Ag-doping on the physico-chemical, spectral, surface, and catalytic properties of the FeMgO system with various Fe2O3 loadings were investigated. The dopant (Ag) molar ratio varied between 0.01 % and 0.05 %. The techniques employed for characterisation of catalysts were TG/DTG, XRD, ESR, N2 adsorption at −196°C, and catalytic decomposition of H2O2 at 25–35°C. The results obtained revealed that the investigated catalysts consisted of nanosized MgO as the major phase, apart from the MgFe2O4 and/or Fe3O4 phases. ESR result of the FeMgO system revealed the presence of paramagnetic species as a result of Ag-doping. The textural properties including SBET, porosity and St were modified by Ag-doping. The doping process with Ag-species improved the catalytic activity of the FeMgO system. Increasing the calcination temperature from 400°C to 800°C increased the catalytic activity (k*30 °C) of 0.05 AgFeMgO in H2O2 decomposition by 21.2 times.


Sign in / Sign up

Export Citation Format

Share Document