Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading

2017 ◽  
Vol 380 ◽  
pp. 151-160 ◽  
Author(s):  
Sara Faiz Hanna Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Maizatul Shima Shaharun ◽  
Duvvria Subbarao ◽  
Ahmed Elbagir

Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial to produce clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, a series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via an impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in a microactivity fixed-bed system at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance were strongly affected by the loading of the active site. Where, the catalytic activity, the methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14% and methanol selectivity of 92% was obtained over a Cu/ZnO-SBA-15 catalyst with a total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well dispersed active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.

2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Asghari ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Sayed Habib Kazemi

AbstractThe present work introduces a good prospect for the development of hierarchical catalysts with excellent catalytic performance in the methanol to aromatic hydrocarbons conversion (MTA) process. Hierarchical H-ZSM5 zeolites, with a tailored pore size and different Si/Al ratios, were synthesized directly using natural kaolin clay as a low-cost silica and aluminium resource. Further explored for the direct synthesis of hierarchical HZSM-5 structures was the steam assisted conversion (SAC) with a cost-effective and green affordable saccharide source of high fructose corn syrup (HFCS), as a secondary mesopore agent. The fabricated zeolites exhibiting good crystallinity, 2D and 3D nanostructures, high specific surface area, tailored pore size, and tunable acidity. Finally, the catalyst performance in the conversion of methanol to aromatic hydrocarbons was tested in a fixed bed reactor. The synthesized H-ZSM5 catalysts exhibited superior methanol conversion (over 100 h up to 90%) and selectivity (over 85%) in the methanol conversion to aromatic hydrocarbon products.


Author(s):  
K. S. Hui ◽  
Christopher Y. H. Chao ◽  
C. W. Kwong ◽  
M. P. Wan

This study investigated the performance of multi-transition metal (Cu, Cr, Ni and Co) ions exchanged zeolite 13X catalysts on methane emission abatement, especially at methane level of the exhaust from natural gas fueled vehicles. Catalytic activity of methane combustion using multi-ions exchanged catalyst was studied under different parameters: mole % of metal loading, inlet velocity and inlet methane concentration at atmospheric pressure and 500 °C. Performance of the catalysts was investigated and explained in terms of the apparent activation energy, number of active sites and BET surface area of the catalyst. This study showed that the multi-ions exchanged catalyst outperformed the single-ions exchanged and the acidified 13X catalysts. Lengthening the residence time could also lead to higher methane conversion %. Catalytic activity of the catalysts was influenced by the mole % of metal loading which played important roles in affecting the apparent activation energy of methane combustion, active sites and also the BET surface area of the catalyst. Increasing mole % of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. In view of these, there existed an optimized mole % of metal loading where the highest catalytic activity was observed.


2019 ◽  
Vol 9 (23) ◽  
pp. 6659-6668 ◽  
Author(s):  
Jie Yang ◽  
Haochen Yu ◽  
Yanbing Wang ◽  
Fuyuan Qi ◽  
Haodong Liu ◽  
...  

Pd/CaMn2O4 provides ideal active sites for oxygen adsorption and desorption, resulting in the promoted charge transfer ability and catalytic activity.


2019 ◽  
Vol 10 (9) ◽  
pp. 2623-2632 ◽  
Author(s):  
Melike Babucci ◽  
Chia-Yu Fang ◽  
Jorge E. Perez-Aguilar ◽  
Adam S. Hoffman ◽  
Alexey Boubnov ◽  
...  

Enveloping atomically dispersed supported iridium with the choice of ionic liquid molecular sheaths and supports controls the catalytic performance.


2015 ◽  
Vol 802 ◽  
pp. 431-436
Author(s):  
Siti Aminah Md Ali ◽  
Ku Halim Ku Hamid ◽  
Kamariah Noor Ismail

Five series of silica supported bimetallic oxide (NiCo/SiO2) catalysts have been synthesized through successive reverse co-precipitation and wet impregnation methods at different metal loadings (i.e. 80Ni20Co/SiO2,, 60Ni40Co/SiO2,50Ni50Co/SiO2,40Ni60Co/SiO2,20Ni80Co/SiO2). The catalytic performance of these catalysts were tested for the CO2methanation catalysis using microactivity fixed bed reactor. Nickel rich catalyst (80Ni20Co/SiO2) exhibited the highest catalytic activity in the CO2methanation with 47.1% of CO2conversion. Meanwhile, the CH4selectivity and yield was found to be at 99.9% and 27%, respectively.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
György Onyestyák ◽  
Szabolcs Harnos ◽  
Cecília Andrea Badari ◽  
Eszter Drotár ◽  
Szilvia Klébert ◽  
...  

AbstractConsecutive hydroconversion of acetic acid (AA) to ethanol was compared over monometallic and novel bimetallic (containing In as guest metal) catalysts on alumina and silica supports (inter alia highly ordered SBA-15) of different porosity and pore structure. The transformation was studied in a fixed bed, flow-through reactor in the temperature range of 220–380°C using hydrogen flow at 21 bar total pressure. AA hydroconversion activity of Cu and Pt catalysts and the yield of selectively produced alcohol were increased drastically by applying SBA-15 as highly ordered, mesoporous silica support instead of alumina. The most active nickel catalysts do not allow the selective addition of hydrogen to carbon-oxygen bonds independently of supports producing mainly CH4; however, indium doping can completely eliminate the hydrodecarbonylation activity as found in earlier studies. The textural properties of studied silica supports of various textures such as SBA-15, CAB-O-SIL, and Grace Sylobead have a profound impact on the catalytic performance of Ni and Ni2In particles.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5506
Author(s):  
Daniel Carreira Batalha ◽  
Márcio José da Silva

Nowadays, the synthesis of biofuels from renewable raw materials is very popular. Among the various challenges involved in improving these processes, environmentally benign catalysts compatible with an inexpensive feedstock have become more important. Herein, we report the recent advances achieved in the development of Niobium-containing heterogeneous catalysts as well as their use in routes to produce biodiesel. The efficiency of different Niobium catalysts in esterification and transesterification reactions of lipids and oleaginous raw materials was evaluated, considering the effect of main reaction parameters such as temperature, time, catalyst load, and oil:alcohol molar ratio on the biodiesel yield. The catalytic performance of Niobium compounds was discussed considering the characterization data obtained by different techniques, including NH3-TPD, BET, and Pyr-FT-IR analysis. The high catalytic activity is attributed to its inherent properties, such as the active sites distribution over a high specific surface area, strength of acidity, nature, amount of acidic sites, and inherent mesoporosity. On top of this, recycling experiments have proven that most Niobium catalysts are stable and can be repeatedly used with consistent catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document