N2O decomposition over (μ-oxo)(μ-hydroxo)di-iron complex supported by ZSM-5 zeolite: effect of cluster size on DFT energy profile

Author(s):  
Hazar Guesmi ◽  
Dorothée Berthomieu ◽  
L. Kiwi-Minsker
Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


1995 ◽  
Vol 92 ◽  
pp. 205-225 ◽  
Author(s):  
J Jortner
Keyword(s):  

1991 ◽  
Vol 30 (06) ◽  
pp. 290-293 ◽  
Author(s):  
P. Maleki ◽  
A. Martinezi ◽  
M. C. Crone-Escanye ◽  
J. Robert ◽  
L. J. Anghileri

The study of the interaction between complexed iron and tumor cells in the presence of 67Ga-citrate indicates that a phenomenon of iron-binding related to the thermodynamic constant of stability of the iron complex, and a hydrolysis (or anion penetration) of the interaction product determine the uptake of 67Ga. The effects of various parameters such as ionic composition of the medium, nature of the iron complex, time of incubation and number of cells are discussed.


Author(s):  
Md.Taz Uddin, Ahmed al Marzean, Md Rafiqul Islam, Shahjahan Ahmed

There are different communication standards in present mobile communication industry. Each of this standards has its own feature, architecture, and channel assignment strategies. Each mobile operator uses one of any standard and their aim is to support as much user as possible to communicate with tolerable interference. For that reason they use different cluster size and frequency planning to cover entire geographical area. To reuse the given bandwidth within the entire geographical area some cells uses same sets of frequency and interference arise when the distance between these cells is small. Also when distance is large then capacity is going low. In this thesis our work is to investigation the co channel interference among different cluster size assuming a limited sub urban geographical area in a cellular GSM network. Also we calculate the number of users using each of this cluster size and finally design a cellular system in this geographical area using best results (minimum interference and maximum capacity).


2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


Author(s):  
Hassan Akbari Rahimi

Transition of reaction is a short-lived unstable molecule in a reaction which is formed in between the reaction when reactants change into products. Whereas, transition state is just the state before formation of new molecule (involves breaking of bonds of reactants and formation of new ones) Transition of reaction differs from a transition state in that the intermediate has a discrete lifetime (be it a few nanoseconds or many days), whereas a transition state lasts for just one bond vibration cycle. Intermediates may be unstable molecules (in which case they are called reactive intermediates) or highly stable molecules. The difference between them can be better described through the energy profile diagram.


2015 ◽  
Vol 2015 (2) ◽  
pp. 1-28
Author(s):  
Tia Trate ◽  
Stephen Tarallo ◽  
Anthony Fiore ◽  
James Lauria
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document