73 poster A new frameless image guided 3D navigation system for interstitial brachytherapy

2003 ◽  
Vol 66 ◽  
pp. S28
Author(s):  
R.C. Krempien ◽  
S. Hassfeld ◽  
W. Harms ◽  
T. Redlich ◽  
C. Hoffele ◽  
...  

2011 ◽  
Vol 114 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Paula Eboli ◽  
Bob Shafa ◽  
Marc Mayberg

Object The authors assessed the feasibility, anatomical accuracy, and cost effectiveness of frameless electromagnetic (EM) neuronavigation in conjunction with portable intraoperative CT (iCT) registration for transsphenoidal adenomectomy (TSA). Methods A prospective database was established for data obtained in 208 consecutive patients who underwent TSA in which the iCT/EM navigation technique was used. Data were compared with those acquired in a retrospective cohort of 65 consecutive patients in whom fluoroscope-assisted TSA had been performed by the same surgeon. All patients in both groups underwent transnasal removal of pituitary adenomas or neuroepithelial cysts, using identical surgical techniques with an operating microscope. In the iCT/EM technique–treated cases, a portable iCT scan was obtained immediately prior to surgery for registration to the EM navigation system, which did not require rigid head fixation. Preexisting (nonnavigation protocol) MR imaging studies were fused with the iCT scans to enable 3D navigation based on MR imaging data. The accuracy of the navigation system was determined in the first 50 iCT/EM cases by visual concordance of the navigation probe location to 5 preselected bony landmarks. For all patients in both cohorts, total operating room time, incision-to-closure time, and relative costs of imaging and surgical procedures were determined from hospital records. Results In every case, iCT registration was successful and preoperative MR images were fused to iCT scans without affecting navigation accuracy. There was 100% concordance between probe tip location and predetermined bony loci in the first 50 cases involving the iCT/EM technique. Total operating room time was significantly less in the iCT/EM cases (mean 108.9 ± 24.3 minutes [208 patients]) compared with the fluoroscopy group (mean 121.1 ± 30.7 minutes [65 patients]; p < 0.001). Similarly, incision-to-closure time was significantly less for the iCT/EM cases (mean 61.3 ± 18.2 minutes) than for the fluoroscopy cases (mean 71.75 ± 19.0 minutes; p < 0.001). Relative overall costs for iCT/EM technique and intraoperative C-arm fluoroscopy were comparable; increased costs for navigation equipment were offset by savings in operating room costs for shorter procedures. Conclusions The use of iCT/MR imaging–guided neuronavigation for transsphenoidal surgery is a time-effective, cost-efficient, safe, and technically beneficial technique.


2018 ◽  
Vol 87 (6) ◽  
pp. AB259
Author(s):  
Fabian Straulino ◽  
Alexander Genthner ◽  
Sibel Kangalli ◽  
Natalja Tscherwinski ◽  
Axel Eickhoff

2008 ◽  
Vol 150 (5) ◽  
pp. 441-445 ◽  
Author(s):  
A. Sieskiewicz ◽  
T. Lyson ◽  
Z. Mariak ◽  
M. Rogowski

2021 ◽  
pp. 105566562110577
Author(s):  
Yuying Zhang ◽  
Jiawei Dai ◽  
Xiazhou Fu ◽  
Jiegang Yang ◽  
Yuchuan Fu ◽  
...  

Objectives: To present the use of dynamic navigation system in the repair of alveolar cleft. Patients and Participants: A total of three non-syndromic patients with unilateral alveolar cleft were involved in this study. Real-time computer-aided navigation were used to achieve restoration and reconstruction with standardized surgical technique. Methods: With the individual virtual 3-dimensional (3-D) modeling based on computed tomography (CT) data, preoperative planning and surgical simulation were carried out with the navigation system. During preoperative virtual planning, the defect volume or the quantity of graft is directly assessed at the surgical region. With the use of this system, the gingival periosteum flap incision can be tracked in real-time, and the bone graft can be navigated under the guidance of the 3-D views until it matches the preoperatively planned position. Results: Three patients with alveolar cleft were successfully performed under navigation guidance. Through the model alignment procedure, accurate matches between the actual intraoperative position and the CT images were achieved within the systematic error of 0.3 mm. The grafted bone was implanted according to the preoperative plan with the aid of instrument- and probe-based navigation. All the patients were healed well without serious complications. Conclusions: These findings suggest that image-guided surgical navigation, including preoperative planning, surgical simulation, postoperative assessment, and computer-assisted navigation was feasible and yielded good clinical outcomes. Clinical relevance: This dynamic navigation could be proved to be a valuable option for this complicated surgical procedure in the management of alveolar cleft repair.


Sign in / Sign up

Export Citation Format

Share Document