scholarly journals PO-0687: Machine learning method for biomarkers identification in lung cancer patients

2016 ◽  
Vol 119 ◽  
pp. S321
Author(s):  
B.D. Delgado-León ◽  
J. Moreno ◽  
J. Cacicedo ◽  
M. Perez ◽  
A. Moreno ◽  
...  
10.2196/13476 ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. e13476 ◽  
Author(s):  
Jiangpeng Wu ◽  
Xiangyi Zan ◽  
Liping Gao ◽  
Jianhong Zhao ◽  
Jing Fan ◽  
...  

Background Liquid biopsies based on blood samples have been widely accepted as a diagnostic and monitoring tool for cancers, but extremely high sensitivity is frequently needed due to the very low levels of the specially selected DNA, RNA, or protein biomarkers that are released into blood. However, routine blood indices tests are frequently ordered by physicians, as they are easy to perform and are cost effective. In addition, machine learning is broadly accepted for its ability to decipher complicated connections between multiple sets of test data and diseases. Objective The aim of this study is to discover the potential association between lung cancer and routine blood indices and thereby help clinicians and patients to identify lung cancer based on these routine tests. Methods The machine learning method known as Random Forest was adopted to build an identification model between routine blood indices and lung cancer that would determine if they were potentially linked. Ten-fold cross-validation and further tests were utilized to evaluate the reliability of the identification model. Results In total, 277 patients with 49 types of routine blood indices were included in this study, including 183 patients with lung cancer and 94 patients without lung cancer. Throughout the course of the study, there was correlation found between the combination of 19 types of routine blood indices and lung cancer. Lung cancer patients could be identified from other patients, especially those with tuberculosis (which usually has similar clinical symptoms to lung cancer), with a sensitivity, specificity and total accuracy of 96.3%, 94.97% and 95.7% for the cross-validation results, respectively. This identification method is called the routine blood indices model for lung cancer, and it promises to be of help as a tool for both clinicians and patients for the identification of lung cancer based on routine blood indices. Conclusions Lung cancer can be identified based on the combination of 19 types of routine blood indices, which implies that artificial intelligence can find the connections between a disease and the fundamental indices of blood, which could reduce the necessity of costly, elaborate blood test techniques for this purpose. It may also be possible that the combination of multiple indices obtained from routine blood tests may be connected to other diseases as well.


2021 ◽  
Author(s):  
Zhenhao Li

UNSTRUCTURED Tuberculosis (TB) is a precipitating cause of lung cancer. Lung cancer patients coexisting with TB is difficult to differentiate from isolated TB patients. The aim of this study is to develop a prediction model in identifying those two diseases between the comorbidities and TB. In this work, based on the laboratory data from 389 patients, 81 features, including main laboratory examination of blood test, biochemical test, coagulation assay, tumor markers and baseline information, were initially used as integrated markers and then reduced to form a discrimination system consisting of 31 top-ranked indices. Patients diagnosed with TB PCR >1mtb/ml as negative samples, lung cancer patients with TB were confirmed by pathological examination and TB PCR >1mtb/ml as positive samples. We used Spatially Uniform ReliefF (SURF) algorithm to determine feature importance, and the predictive model was built using machine learning algorithm Random Forest. For cross-validation, the samples were randomly split into four training set and one test set. The selected features are composed of four tumor markers (Scc, Cyfra21-1, CEA, ProGRP and NSE), fifteen blood biochemical indices (GLU, IBIL, K, CL, Ur, NA, TBA, CHOL, SA, TG, A/G, AST, CA, CREA and CRP), six routine blood indices (EO#, EO%, MCV, RDW-S, LY# and MPV) and four coagulation indices (APTT ratio, APTT, PTA, TT ratio). This model presented a robust and stable classification performance, which can easily differentiate the comorbidity group from the isolated TB group with AUC, ACC, sensitivity and specificity of 0.8817, 0.8654, 0.8594 and 0.8656 for the training set, respectively. Overall, this work may provide a novel strategy for identifying the TB patients with lung cancer from routine admission lab examination with advantages of being timely and economical. It also indicated that our model with enough indices may further increase the effectiveness and efficiency of diagnosis.


Author(s):  
Ting Jin ◽  
Nam D Nguyen ◽  
Flaminia Talos ◽  
Daifeng Wang

Abstract Motivation Gene expression and regulation, a key molecular mechanism driving human disease development, remains elusive, especially at early stages. Integrating the increasing amount of population-level genomic data and understanding gene regulatory mechanisms in disease development are still challenging. Machine learning has emerged to solve this, but many machine learning methods were typically limited to building an accurate prediction model as a ‘black box’, barely providing biological and clinical interpretability from the box. Results To address these challenges, we developed an interpretable and scalable machine learning model, ECMarker, to predict gene expression biomarkers for disease phenotypes and simultaneously reveal underlying regulatory mechanisms. Particularly, ECMarker is built on the integration of semi- and discriminative-restricted Boltzmann machines, a neural network model for classification allowing lateral connections at the input gene layer. This interpretable model is scalable without needing any prior feature selection and enables directly modeling and prioritizing genes and revealing potential gene networks (from lateral connections) for the phenotypes. With application to the gene expression data of non-small-cell lung cancer patients, we found that ECMarker not only achieved a relatively high accuracy for predicting cancer stages but also identified the biomarker genes and gene networks implying the regulatory mechanisms in the lung cancer development. In addition, ECMarker demonstrates clinical interpretability as its prioritized biomarker genes can predict survival rates of early lung cancer patients (P-value < 0.005). Finally, we identified a number of drugs currently in clinical use for late stages or other cancers with effects on these early lung cancer biomarkers, suggesting potential novel candidates on early cancer medicine. Availabilityand implementation ECMarker is open source as a general-purpose tool at https://github.com/daifengwanglab/ECMarker. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Jiangpeng Wu ◽  
Xiangyi Zan ◽  
Liping Gao ◽  
Jianhong Zhao ◽  
Jing Fan ◽  
...  

BACKGROUND Liquid biopsies based on blood samples have been widely accepted as a diagnostic and monitoring tool for cancers, but extremely high sensitivity is frequently needed due to the very low levels of the specially selected DNA, RNA, or protein biomarkers that are released into blood. However, routine blood indices tests are frequently ordered by physicians, as they are easy to perform and are cost effective. In addition, machine learning is broadly accepted for its ability to decipher complicated connections between multiple sets of test data and diseases. OBJECTIVE The aim of this study is to discover the potential association between lung cancer and routine blood indices and thereby help clinicians and patients to identify lung cancer based on these routine tests. METHODS The machine learning method known as Random Forest was adopted to build an identification model between routine blood indices and lung cancer that would determine if they were potentially linked. Ten-fold cross-validation and further tests were utilized to evaluate the reliability of the identification model. RESULTS In total, 277 patients with 49 types of routine blood indices were included in this study, including 183 patients with lung cancer and 94 patients without lung cancer. Throughout the course of the study, there was correlation found between the combination of 19 types of routine blood indices and lung cancer. Lung cancer patients could be identified from other patients, especially those with tuberculosis (which usually has similar clinical symptoms to lung cancer), with a sensitivity, specificity and total accuracy of 96.3%, 94.97% and 95.7% for the cross-validation results, respectively. This identification method is called the routine blood indices model for lung cancer, and it promises to be of help as a tool for both clinicians and patients for the identification of lung cancer based on routine blood indices. CONCLUSIONS Lung cancer can be identified based on the combination of 19 types of routine blood indices, which implies that artificial intelligence can find the connections between a disease and the fundamental indices of blood, which could reduce the necessity of costly, elaborate blood test techniques for this purpose. It may also be possible that the combination of multiple indices obtained from routine blood tests may be connected to other diseases as well.


Sign in / Sign up

Export Citation Format

Share Document