PH-0167 MRI features correlate with a molecular signature in glioblastoma stem cells

2021 ◽  
Vol 161 ◽  
pp. S102-S103
Author(s):  
F. Eckert ◽  
K. Ganser ◽  
N. Stransky ◽  
B. Bender ◽  
J. Schittenhelm ◽  
...  
2014 ◽  
Vol 15 (9) ◽  
pp. 839-846 ◽  
Author(s):  
Xinmei Wang ◽  
Xiaomeng Huang ◽  
Zhaogang Yang ◽  
Daniel Gallego-Perez ◽  
Junyu Ma ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Laetitia Seguin ◽  
Soline Odouard ◽  
Francesca Corlazzoli ◽  
Sarah Al Haddad ◽  
Laurine Moindrot ◽  
...  

AbstractRecently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macropinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of-principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients.


2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


2021 ◽  
Vol 186 ◽  
pp. 114437
Author(s):  
Monira Hoque ◽  
Siu Wai Wong ◽  
Ariadna Recasens ◽  
Ramzi Abbassi ◽  
Nghi Nguyen ◽  
...  

2018 ◽  
Vol 34 (6) ◽  
pp. 425-440 ◽  
Author(s):  
Yoichiro Kawamura ◽  
Jun Takouda ◽  
Koji Yoshimoto ◽  
Kinichi Nakashima

2011 ◽  
Vol 47 ◽  
pp. S171
Author(s):  
D. Danovi ◽  
A. Folarin ◽  
S. Pollard

Glia ◽  
2014 ◽  
Vol 62 (10) ◽  
pp. 1687-1698 ◽  
Author(s):  
Yun Bai ◽  
Justin D. Lathia ◽  
Peisu Zhang ◽  
William Flavahan ◽  
Jeremy N. Rich ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172884 ◽  
Author(s):  
Julia Pollak ◽  
Karan G. Rai ◽  
Cory C. Funk ◽  
Sonali Arora ◽  
Eunjee Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document