scholarly journals Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Laetitia Seguin ◽  
Soline Odouard ◽  
Francesca Corlazzoli ◽  
Sarah Al Haddad ◽  
Laurine Moindrot ◽  
...  

AbstractRecently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macropinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of-principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sangho Lee ◽  
Min Kyung Lee ◽  
Hyunjoon Kong ◽  
Young-sup Yoon

Various hydrogels are used to create vascular structure in vitro or to improve cell engraftment to overcome low cell survival in vivo, a main hurdle for bare cell therapy Recently we developed a modified alginate hydrogel within which microchannels are aligned to guide the direction and spatial organization of loaded cells. We investigated whether these cell constructs in which HUVECs and human mesenchymal stem cells (hMSCs) are co-loaded in this novel microchanneled hydrogel facilitate formation of vessels in vitro and in vivo, and enhance recovery of hindlimb ischemia. We crafted a modified alginate hydrogel which has microchannels, incorporates a cell adhesion peptide RGD, and was encapsulated with VEGF. We then compared vascular structure formation between the HUVEC only (2 x 105 cells) group and the HUVEC plus hMSC group. In the HUVEC+hMSC group, we mixed HUVECs and hMSCs at the ratio of 3:1. For cell tracking, we labeled HUVECs with DiO, a green fluorescence dye. After loading cells into the microchannels of the hydrogel, these constructs were cultured for seven days and were examined by confocal microscopy. In the HUVEC only group, HUVECs stands as round shaped cells without forming tubular structures within the hydrogel. However, in the HUVEC+hMSC group, HUVECs were stretched out and connected with each other, and formed vessel-like structure following pre-designed microchannels. These results suggested that hMSCs play a critical role for vessel formation by HUVECs. We next determined their in vivo effects using a mouse hindlimb ischemia model. We found that engineered HUVEC+hMSC group showed significantly higher perfusion over 4 weeks compared to the engineered HUVEC only group or bare cell (HUVEC) group. Confocal microscopic analysis of harvested tissues showed more robust vessel formation within and outside of the cell constructs and longer term cell survival in HUVEC+hMSC group compared to the other groups. In conclusion, this novel microchanneled alginate hydrogel facilitates aligned vessel formation of endothelial cells when combined with MSCs. This vessel-embedded hydrogel constructs consisting of HUVECs and MSCs contribute to perfusable vessel formation, prolong cell survival in vivo, and are effective for recovering limb ischemia.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 560-567 ◽  
Author(s):  
David G. Kent ◽  
Brad J. Dykstra ◽  
Jay Cheyne ◽  
Elaine Ma ◽  
Connie J. Eaves

Abstract Hematopoietic stem cells (HSCs) regenerated in vivo display sustained differences in their self-renewal and differentiation activities. Variations in Steel factor (SF) signaling are known to affect these functions in vitro, but the cellular and molecular mechanisms involved are not understood. To address these issues, we evaluated highly purified HSCs maintained in single-cell serum-free cultures containing 20 ng/mL IL-11 plus 1, 10, or 300 ng/mL SF. Under all conditions, more than 99% of the cells traversed a first cell cycle with similar kinetics. After 8 hours in the 10 or 300 ng/mL SF conditions, the frequency of HSCs remained unchanged. However, in the next 8 hours (ie, 6 hours before any cell divided), HSC integrity was sustained only in the 300 ng/mL SF cultures. The cells in these cultures also contained significantly higher levels of Bmi1, Lnk, and Ezh2 transcripts but not of several other regulators. Assessment of 21 first division progeny pairs further showed that only those generated in 300 ng/mL SF cultures contained HSCs and pairs of progeny with similar differentiation programs were not observed. Thus, SF signaling intensity can directly and coordinately alter the transcription factor profile and long-term repopulating ability of quiescent HSCs before their first division.


2019 ◽  
Vol 12 (590) ◽  
pp. eaaw7095
Author(s):  
Dina B. AbuSamra ◽  
Jérôme Mauris ◽  
Pablo Argüeso

Paracrine interactions between epithelial cells and stromal fibroblasts occur during tissue repair, development, and cancer. Crucial to these processes is the production of matrix metalloproteinases (MMPs) that modify the microenvironment. Here, we demonstrated that the carbohydrate-binding protein galectin-3 stimulated microenvironment remodeling in the cornea by promoting the paracrine action of secreted interleukin-1β (IL-1β). Through live cell imaging in vitro, we observed rapid activation of the MMP9 promoter in clusters of cultured human epithelial cells after direct heterotypic contact with single primary human fibroblasts. Soluble recombinant galectin-3 and endogenous galectin-3 of epithelial origin both stimulated MMP9 activity through the induction of IL-1β secretion by fibroblasts. In vivo, mechanical disruption of the basement membrane in wounded corneas prompted an increase in the abundance of IL-1β in the stroma and increased the amount of gelatinase activity in the epithelium. Moreover, corneas of galectin-3–deficient mice failed to stimulate IL-1β after wounding. This mechanism of paracrine control has broad importance for our understanding of how the proteolytic microenvironment is modified in epithelial-stromal interactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hoon Lim ◽  
Dahm Lee ◽  
Wan Kyu Choi ◽  
Soo Jin Choi ◽  
Wonil Oh ◽  
...  

The formation of neurofibrillary tangles has been implicated as an important pathological marker for Alzheimer’s disease (AD). Studies have revealed that the inhibition of abnormal hyperphosphorylation and aggregation of tau in the AD brain might serve as an important drug target. Using in vitro and in vivo experimental models, such as the AD mouse model (5xFAD mice), we investigated the inhibition of hyperphosphorylation of tau using the human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Administration of hUCB-MSCs not only ameliorated the spatial learning and memory impairments but also mitigated the hyperphosphorylation of tau in 5xFAD mice. Furthermore, in vivo experiments in mice and in vitro ThT fluorescence assay validated galectin-3 (GAL-3) as an essential factor of hUCB-MSC. Moreover, GAL-3 was observed to be involved in the removal of aberrant forms of tau, by reducing hyperphosphorylation through decrements in the glycogen synthase kinase 3 beta (GSK-3β). Our results confirm that GAL-3, secreted by hUCB-MSC, regulates the abnormal accumulation of tau by protein-protein interactions. This study suggests that hUCB-MSCs mitigate hyperphosphorylation of tau through GAL-3 secretion. These findings highlight the potential role of hUCB-MSCs as a therapeutic agent for aberrant tau in AD.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1208
Author(s):  
Maral Aminpour ◽  
Marco Cannariato ◽  
Angelica Zucco ◽  
Elisabetta Di Gregorio ◽  
Simone Israel ◽  
...  

Galectin-3 is a carbohydrate-binding protein and the most studied member of the galectin family. It regulates several functions throughout the body, among which are inflammation and post-injury remodelling. Recent studies have highlighted the similarity between Galectin-3′s carbohydrate recognition domain and the so-called “galectin fold” present on the N-terminal domain of the S1 sub-unit of the SARS-CoV-2 spike protein. Sialic acids binding to the N-terminal domain of the Spike protein are known to be crucial for viral entry into humans, and the role of Galectin-3 as a mediator of lung fibrosis has long been the object of study since its levels have been found to be abnormally high in alveolar macrophages following lung injury. In this context, the discovery of a double inhibitor may both prevent viral entry and reduce post-infection pulmonary fibrosis. In this study, we use a database of 56 compounds, among which 37 have known experimental affinity with Galectin-3. We carry out virtual screening of this database with respect to Galectin-3 and Spike protein. Several ligands are found to exhibit promising binding affinity and interaction with the Spike protein’s N-terminal domain as well as with Galectin-3. This finding strongly suggests that existing Galectin-3 inhibitors possess dual-binding capabilities to disrupt Spike–ACE2 interactions. Herein we identify the most promising inhibitors of Galectin-3 and Spike proteins, of which five emerge as potential dual effective inhibitors. Our preliminary results warrant further in vitro and in vivo testing of these putative inhibitors against SARS-CoV-2 with the hope of being able to halt the spread of the virus in the future.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Paula E. Florian ◽  
Liviu Duta ◽  
Valentina Grumezescu ◽  
Gianina Popescu-Pelin ◽  
Andrei C. Popescu ◽  
...  

This study is focused on the adhesion and differentiation of the human primary mesenchymal stem cells (hMSC) to osteoblasts lineage on biological-derived hydroxyapatite (BHA) and lithium-doped BHA (BHA:LiP) coatings synthesized by Pulsed Laser Deposition. An optimum adhesion of the cells on the surface of BHA:LiP coatings compared to control (uncoated Ti) was demonstrated using immunofluorescence labelling of actin and vinculin, two proteins involved in the initiation of the cell adhesion process. BHA:LiP coatings were also found to favor the differentiation of the hMSC towards an osteoblastic phenotype in the presence of osteoinductive medium, as revealed by the evaluation of osteoblast-specific markers, osteocalcin and alkaline phosphatase. Numerous nodules of mineralization secreted from osteoblast cells grown on the surface of BHA:LiP coatings and a 3D network-like organization of cells interconnected into the extracellular matrix were evidenced. These findings highlight the good biocompatibility of the BHA coatings and demonstrate that the use of lithium as a doping agent results in an enhanced osteointegration potential of the synthesized biomaterials, which might therefore represent viable candidates for future in vivo applications.


Sign in / Sign up

Export Citation Format

Share Document