A comparison between tracks created by high energy mono-atomic and cluster ions in Y3Fe5O12

Author(s):  
J. Jensen ◽  
A. Dunlop ◽  
S. Della-Negra ◽  
M. Toulemonde
Keyword(s):  
2006 ◽  
Vol 73 (2) ◽  
Author(s):  
S. Eden ◽  
J. Tabet ◽  
K. Samraoui ◽  
S. Louc ◽  
B. Farizon ◽  
...  

1990 ◽  
Vol 206 ◽  
Author(s):  
Donald M. Cox ◽  
Barbara Kessler ◽  
Pierre Fayet ◽  
Wolfgang Eberhardt ◽  
Rex D. Sherwood ◽  
...  

ABSTRACTUsing high energy rare gas ion sputtering of metal targets, we are able to produce nanoamps of mass selected transition metal clusters. Mono-sized cluster ions are deposited at low kinetic energy upon substrates, e.g. silica or carbon, and are then characterized using UV and x-ray photoemission. In this paper we will discuss photoemission measurements of the 4f7/2 core level energies of Au (1–5,7 atom samples) clusters deposited on silica. From such studies we are beginning to understand how electronic structure, cluster stability and mobility depend on (deposited) cluster size, surface coverage, and substrate temperature.


2017 ◽  
Vol 114 (42) ◽  
pp. 11046-11051 ◽  
Author(s):  
Hong Fang ◽  
Puru Jena

Enjoying great safety, high power, and high energy densities, all-solid-state batteries play a key role in the next generation energy storage devices. However, their development is limited by the lack of solid electrolyte materials that can reach the practically useful conductivities of 10−2 S/cm at room temperature (RT). Here, by exploring a set of lithium-rich antiperovskites composed of cluster ions, we report a lithium superionic conductor, Li3SBF4, that has an estimated 3D RT conductivity of 10−2 S/cm, a low activation energy of 0.210 eV, a giant band gap of 8.5 eV, a small formation energy, a high melting point, and desired mechanical properties. A mixed phase of the material, Li3S(BF4)0.5Cl0.5, with the same simple crystal structure exhibits an RT conductivity as high as 10−1 S/cm and a low activation energy of 0.176 eV. The high ionic conductivity of the crystals is enabled by the thermal-excited vibrational modes of the cluster ions and the large channel size created by mixing the large cluster ion with the small elementary ion.


1996 ◽  
Vol 438 ◽  
Author(s):  
I. Yamada ◽  
J. Matsuo ◽  
E. C. Jones ◽  
D. Takeuchi ◽  
T. Aoki ◽  
...  

AbstractCluster ion implantation is an attractive alternative to conventional ion implantation, particularly for shallow junction formation. It is easy to obtain high-current ion beams with low equivalent energy using cluster ion beams. The implanted boron distribution in 5keV B10H14 implanted Si is markedly shallower than that in 5keV BF2 ion implanted Si. The implanted depth is less than 0.04 μm, indicating that cluster ion implantation is capable of forming shallow junctions. The sheet resistance of 3keV B10H14 implanted samples falls below 500 Ω/sq after annealing at 1000°C for 10s. Shallow implantation can be realized by a high energy cluster beam without space-charge problems in the incident beam. Defect formation, resulting from local energy deposition and multiple collisions, is unique for cluster ions. The thickness of the damaged layer formed by cluster ion bombardment increases with the size of the cluster, if implant energy and ion dose remain constant. This is one of the nonlinear “cluster effects,” which may allow some control over the implant damage distributions that accompany implanted ions, and which have been shown to have a great effect on dopant redistribution during annealing


Sign in / Sign up

Export Citation Format

Share Document