Hepatitis C virus non-structural (NS)5A protein and interferon resistance: challenge of simple mutational analyses by a new bio-mathematical model

2002 ◽  
Vol 36 ◽  
pp. 93
Author(s):  
Christoph Sarrazin ◽  
Eva Herrmann ◽  
Katharina Bruch ◽  
Stefan Zeuzem
2018 ◽  
Author(s):  
Mphatso Kalemera ◽  
Dilyana Mincheva ◽  
Joe Grove ◽  
Christopher J. R. Illingworth

AbstractThe mechanism by which hepatitis C virus (HCV) gains entry into cells is a complex one, involving a broad range of host proteins. Entry is a critical phase of the viral lifecycle, and a potential target for therapeutic or vaccine-mediated intervention. However, the mechanics of HCV entry remain poorly understood. Here we describe a novel computational model of viral entry, encompassing the relationship between HCV and the key host receptors CD81 and SR-B1. We conduct experiments to thoroughly quantify the influence of an increase or decrease in receptor availability upon the extent of viral entry. We use these data to build and parameterise a mathematical model, which we then validate by further experiments. Our results are consistent with sequential HCV-receptor interactions, whereby initial interaction between the HCV E2 glycoprotein and SR-B1 facilitates the accumulation CD81 receptors, leading to viral entry. However, we also demonstrate that a small minority of virus can achieve entry in the absence of SR-B1. Our model estimates the impact of the different obstacles that viruses must surmount to achieve entry; among virus particles attaching to the cell surface, 20-35% accumulate sufficient CD81 receptors, of these 4-8% then complete the subsequent steps to achieve productive infection. Furthermore, we make estimates of receptor stoichiometry; between 3 and 6 CD81 receptors are likely to be required to achieve viral entry. Our model provides a tool to investigate the entry characteristics of HCV variants and outlines a framework for future quantitative studies of the multi-receptor dynamics of HCV entry.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650056
Author(s):  
Sandip Banerjee ◽  
Ram Keval ◽  
Sunita Gakkhar

A modified mathematical model of hepatitis C viral dynamics has been presented in this paper, which is described by four coupled ordinary differential equations. The aim of this paper is to perform global stability analysis using geometric approach to stability, based on the higher-order generalization of Bendixson’s criterion. The result is also supported numerically. An important epidemiological issue of eradicating hepatitis C virus has been addressed through the global stability analysis.


2008 ◽  
Vol 198 (1) ◽  
pp. 154-155 ◽  
Author(s):  
Georgios Germanidis ◽  
Simeon Metallidis ◽  
Georgia Lazaraki ◽  
Jean Michel Pawlotsky ◽  
Paul Nikolaidis

1999 ◽  
Vol 73 (8) ◽  
pp. 6506-6516 ◽  
Author(s):  
Michael Gale ◽  
Bart Kwieciszewski ◽  
Michelle Dossett ◽  
Haruhisa Nakao ◽  
Michael G. Katze

ABSTRACT Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2α in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2α phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.


Sign in / Sign up

Export Citation Format

Share Document