The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana

Plant Science ◽  
2000 ◽  
Vol 158 (1-2) ◽  
pp. 115-127 ◽  
Author(s):  
Zhenzhen Ye ◽  
Roxana Rodriguez ◽  
Augustine Tran ◽  
Hoang Hoang ◽  
Darryn de los Santos ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Shubhpreet Kaur ◽  
Prapti Prakash ◽  
Dong-Ho Bak ◽  
Sung Hyun Hong ◽  
Chuloh Cho ◽  
...  

Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS)-scavenging enzyme, which catalyzes the removal of hydrogen peroxide (H2O2) to prevent oxidative damage. The peroxidase activity of APX is regulated by posttranslational modifications (PTMs), such as S-nitrosylation, tyrosine nitration, and S-sulfhydration. In addition, it has been recently reported that APX functions as a molecular chaperone, protecting rice against heat stress. In this study, we attempted to identify the various functions of APX in Arabidopsis and the effects of PTMs on these functions. Cytosol type APX1 from Arabidopsis thaliana (AtAPX1) exists in multimeric forms ranging from dimeric to high-molecular-weight (HMW) complexes. Similar to the rice APX2, AtAPX1 plays a dual role behaving both as a regular peroxidase and a chaperone molecule. The dual activity of AtAPX1 was strongly related to its structural status. The main dimeric form of the AtAPX1 protein showed the highest peroxidase activity, whereas the HMW form exhibited the highest chaperone activity. Moreover, in vivo studies indicated that the structure of AtAPX1 was regulated by heat and salt stresses, with both involved in the association and dissociation of complexes, respectively. Additionally, we investigated the effects of S-nitrosylation, S-sulfhydration, and tyrosine nitration on the protein structure and functions using gel analysis and enzymatic activity assays. S-nitrosylation and S-sulfhydration positively regulated the peroxidase activity, whereas tyrosine nitration had a negative impact. However, no effects were observed on the chaperone function and the oligomeric status of AtAPX1. Our results will facilitate the understanding of the role and regulation of APX under abiotic stress and posttranslational modifications.


1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty van Loenen-Martinet ◽  
Hetty Blankestijn de Vries

2013 ◽  
Vol 51 (1) ◽  
pp. 102-108 ◽  
Author(s):  
F. J. R. Cruz ◽  
G. L. S. Castro ◽  
D. D. Junior ◽  
R. A. Festucci-Buselli ◽  
H. A. Pinheiro

1995 ◽  
Vol 50 (7-8) ◽  
pp. 543-551
Author(s):  
Bernhard Epping ◽  
Alexander P. Hansen ◽  
Peter Martin

Abstract Nodules of Rhizobium leguminosarum bv. phaseoli in symbiosis with Phaseolus vulgaris were compared with regard to their nitrogenase activity and activities of enzymes involved in the removal of O2·- and H2O2 as well as total ascorbate content. Activities of catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), and total ascorbate content were consist­ently higher in nodules inhabited by bacterial strains with higher nitrogenase activity. Values for superoxide dismutase (EC 1.15.11), and guaiacol peroxidase activity did not differ for the bacterial strains compared. On the other hand, when different plant cultivars were inoculated with the same bacterial strain, high nitrogenase activity did not correlate with a higher activ­ity of the oxygen scavenging enzyms or a higher content of total ascorbate. In this case, values for guaiacol peroxidase activity were greatly enhanced in nodules with lower nitrogen­ ase activity. This may be part of a hypersensitive reaction of the plant cultivar against the bacterial symbiotic partner. Inhibition of catalase activity in the nodules by addition of triazole to the nutrient solution did not alter nitrogenase activity within the first nine hours after addition. It can be concluded that the activity of catalase, ascorbate peroxidase, and superoxide dismutase is not generally coupled to nitrogenase activity in root nodules of P. vulgaris.


Biologia ◽  
2010 ◽  
Vol 65 (5) ◽  
Author(s):  
Renata Bączek-Kwinta ◽  
Agnieszka Adamska ◽  
Katarzyna Seidler-Łożykowska ◽  
Krzysztof Tokarz

AbstractThe response of the wild type (WT) and a strain C6/2 of German chamomile to 7-d soil drought and subsequent 7-day rehydration was studied. Shoot and leaf growth, vegetative development, water and protein contents, ascorbate peroxidase activity and gas exchange were compared. At the stress stage, water content of WT plants was slightly influenced and the effect was ceased after rehydration. Also the decrease in gas exchange was temporary. New leaves were formed, although their area was diminished. On the contrary, leaves of C6/2 plants were more desiccated and the durable decrease in water content was accompanied by the impairment in gas exchange also at the recovery stage (20–40% loss when compared to the control). At both stages of the experiment the growth of the long shoots of this genotype was drastically decreased, as well as leaf formation. Ascorbate peroxidase activity was increased by drought in leaves of both genotypes, but the pattern of changes in WT plants reflected the enhancement of metabolism resulting from proper water content and gas exchange at the recovery stage. Different pattern of changes in the protein content during drought was also noticed: a slight increase in WT, while the decrease by ¼ in C6/2 leaves. The response of WT plants to desiccation and rewatering was found to be more elastic than that of C6/2.


1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty Loenen-Martinet ◽  
Hetty Blankestijn de Vries

Sign in / Sign up

Export Citation Format

Share Document