Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants

2013 ◽  
Vol 51 (1) ◽  
pp. 102-108 ◽  
Author(s):  
F. J. R. Cruz ◽  
G. L. S. Castro ◽  
D. D. Junior ◽  
R. A. Festucci-Buselli ◽  
H. A. Pinheiro
2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


Author(s):  
Mahesh K. Mahatma ◽  
Nidhi Radadiya ◽  
Vipul B. Parekh ◽  
Bhavika Dobariya ◽  
Lalit Mahatma

Expression of S-Adenosylmethionine synthetase (SAMS) gene in pigeon pea (Cajanus cajan L.) was analyzed by qRT PCR during abiotic stresses viz., drought, heavy metal (CdCl2) and cold. Maximum expression of SAMS gene in the leaves were observed at 3 days after drought stress with 15% PEG. Conversely, its expression was not detected in leaves and roots at cadmium stress but transcripts were down regulated as compared to the control. After 6 days of stress expression of SAMS gene was increased in leaves and roots as compared to the control but it was lower than its expression at 3 days after stress. The activities of antioxidative enzymes like glutathione reductase, glutathione-s-transferase, ascorbate peroxidase and metabolite constituents like polyamines and glycine betaine were also analyzed. The activities of antioxidative enzymes and concentration of glycine betaine showed remarkable increase in response to all stresses, except ascorbate peroxidase in heavy metal stress.


2016 ◽  
Vol 37 (2) ◽  
pp. 567 ◽  
Author(s):  
Cristina Ferreira Larré ◽  
Caroline Leivas Moraes ◽  
Junior Borella ◽  
Luciano Do Amarante ◽  
Sidnei Deuner ◽  
...  

This study aimed to evaluate the mechanisms of flood tolerance of the root system of Erythrina crista-galli L. plants by measuring the activity of antioxidant enzymes and oxidative stress components in the leaves and roots. Additionally, the activity of fermentation enzymes in the roots was measured. The following two treatments were used: plants with flooded roots, which were maintained at a given water level above the soil surface, and non-flooded plants, which were used as the control. The measurements were performed at 10, 20, 30, 40, and 50 days after treatment. The following parameters were evaluated at each time-point: the activities of superoxide dismutase, catalase and ascorbate peroxidase, the quantification of lipid peroxidation and hydrogen peroxide (H2O2) content in the leaves, roots, and adventitious roots, and the activities of lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase in both the primary and adventitious roots. There was an increase in the activity of catalase and ascorbate peroxidase in the leaves to maintain stable H2O2 levels, which reduced lipid peroxidation. In the roots, higher activity of all antioxidant enzymes was observed at up to 30 days of flooding, which favoured both reduced H2O2 levels and lipid peroxidation. Activity of the fermentation enzymes was observed in the primary roots from the onset of the stress conditions; however, their activity was necessary only in the adventitious roots during the final periods of flooding. In conclusion, E. crista-galli L. depends on adventitious roots and particularly on the use of the fermentation pathway to tolerate flood conditions.


2016 ◽  
Vol 105 ◽  
pp. 218-225 ◽  
Author(s):  
S. Ullah ◽  
Z. Kolo ◽  
I. Egbichi ◽  
M. Keyster ◽  
N. Ludidi

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0248200
Author(s):  
Wadood Shah ◽  
Sami Ullah ◽  
Sajjad Ali ◽  
Muhammad Idrees ◽  
Muhammad Nauman Khan ◽  
...  

Water being a vital part of cell protoplasm plays a significant role in sustaining life on earth; however, drastic changes in climatic conditions lead to limiting the availability of water and causing other environmental adversities. α-tocopherol being a powerful antioxidant, protects lipid membranes from the drastic effects of oxidative stress by deactivating singlet oxygen, reducing superoxide radicals, and terminating lipid peroxidation by reducing fatty acyl peroxy radicals under drought stress conditions. A pot experiment was conducted and two groups of lentil cultivar (Punjab-2009) were exposed to 20 and 25 days of drought induced stress by restricting the availability of water after 60th day of germination. Both of the groups were sprinkled with α-tocopherol 100, 200 and 300 mg/L. Induced water deficit stress conditions caused a pronounced decline in growth parameters including absolute growth rate (AGR), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), relative growth rate (RGR), chlorophyll a, b, total chlorophyll content, carotenoids, and soluble protein content (SPC) which were significantly enhanced by exogenously applied α-tocopherol. Moreover, a significant increase was reported in total proline content (TPC), soluble sugar content (SSC), glycine betaine (GB) content, endogenous tocopherol levels, ascorbate peroxidase (APX), catalase (CAT) peroxidase (POD) and superoxide dismutase (SOD) activities. On the contrary, exogenously applied α-tocopherol significantly reduced the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2). In conclusion, it was confirmed that exogenous application of α-tocopherol under drought induced stress regimes resulted in membrane protection by inhibiting lipid peroxidation, enhancing the activities of antioxidative enzymes (APX, CAT, POD, and SOD) and accumulation of osmolytes such as glycine betaine, proline and sugar. Consequently, modulating different growth, physiological and biochemical attributes.


2021 ◽  
Vol 8 (2) ◽  
pp. 24-35
Author(s):  
T. Mamenko ◽  
S. Kots ◽  
V. Patyka

Aim. The elaboration of efficient legume-rhizobial symbiosis systems, involving active strains of nodule bacteria, in the combination with fungicide seed treatment may be an alternative method of providing ecologically friendly nitrogen sources to plants and promoting their tolerance to the external factors, which is relevant for preservation and restoration of envi- ronmental quality. Therefore, the aim of our study was to determine the impact of pre-sowing seed treatment with fungi- cides, which differ in the action spectrum of active substances – Standak Top (fipronil, 250 g/l, thiophanate-methyl, 225 g/l, pyraclostrobin, 25 g/l) and Maxim XL (fludioxonyl, 25 g/l, metalaxyl, 10 g/l), on the intensity of the development of lipid peroxidation processes, the activity of antioxidant enzyme ascorbate peroxidase and nitrogen fixation activity in soybeans on the early stages of forming legume-rhizobial symbiosis. Methods. Microbiological (cultivation of a bacterial culture, seed inoculation), physiological (vegetative experiment), biochemical (spectrophotometric determination of the content of lipid peroxidation products and the activity of ascorbate peroxidase; measuring the nitrogen-fixation activity using a gas chro- matography). Results. It was found that pre-sowing fungicide treatment of soybean seeds and subsequent inoculation with active rhizobia of strain 634b did not result in the change in the content of TBA-active products in roots and root nodules (the values of indices were within the experiment deviation). At the same time, after seed inoculation using rhizobia and treat- ment with Maxim XL, there was an increase in the activity of ascorbate peroxidase in the roots from 20.3 to 30.8 %, and with Standak Top – from 20.0 to 29.8 % during the early stages of ontogenesis till the formation of the third ternate leaf. Here, the activity of the enzyme in root nodules increased by 24.7–40.3 % at the fungicidal effect. Our data demonstrate that the combination of fungicide seed treatment and inoculation with active rhizobia does not induce lipid peroxidation processes, but promotes the initiation of protective antioxidant properties in soybeans. It is accompanied with efficient functioning of the symbiotic apparatus, which is manifested in the increase in nitrogen-fixing activity of nodule bacteria, formed by active rhizobia of strain 634b after the seed treatment with Standak Top – by 98.3 and 78.1 % and after Maxim XL – by 78.6 and 196.2 % respectively, during the stages of the second and third ternate leaves. Conclusions. The pre-sowing soybean seed treatment with fungicides Standak Top and Maxim XL and the subsequent inoculation with active rhizobia of strain 634b does not induce the development of lipid peroxidation processes, but increases the activity of the antioxidant enzyme, ascor- bate peroxidase, in the roots and root nodules, which is accompanied with the efficient work of the symbiotic apparatus on the early stages of determining legume-rhizobial symbiosis. This method of seed treatment may be a novel measure, to use in the technologies of cultivating soybeans to enhance the realization of the symbiotic potential and meet the needs of plants in ecologically friendly nitrogen, and to promote the formation of their tolerance to the corresponding cultivation conditions.


Trees ◽  
2009 ◽  
Vol 24 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Marcelle Auday Costa ◽  
Hugo Alves Pinheiro ◽  
Elizabeth Santos Cordeiro Shimizu ◽  
Felipe Tameirão Fonseca ◽  
Benedito Gomes dos Santos Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document