Spatial extension of extreme rainfall events: return period of isohyets area and influence of rain gauges network evolution

1997 ◽  
Vol 45 (3) ◽  
pp. 183-199 ◽  
Author(s):  
L. Neppel ◽  
M. Desbordes ◽  
J.M. Masson
2020 ◽  
Author(s):  
Wouter Buytaert ◽  
Jonathan Paul ◽  
Boris Ochoa-Tocachi ◽  

<p>Mountain regions such as the Andes and the Himalayas are a hotspot of natural hazards. Many of them, in particular floods, landslides, and soil degradation, are related to extreme rainfall events. However, characterising rainfall is complicated by the extreme spatiotemporal gradients, and the scarcity of in situ observations. Characterising extreme rainfall events is particularly problematic because most existing rainfall records are only available at a low temporal resolution (daily or coarser). Here, we analyse records of a network of 77 tipping bucket rain gauges located in Ecuador, Peru, Bolivia and Nepal, with a data availability ranging between 1 and 10 years.</p><p>From the raw data we derive rainfall intensities at 5 and 10 minute intervals using composite cubic spline interpolation and smoothing. We then compare those intensities with instantaneous measurements from the Global Precipitation Measurement (GPM) satellite mission. Although correlations are generally low, it is possible to find significant trends that make it possible to interpolate the observed intensities in space, and to generate rainfall intensity quantile maps for the wider high Andean region.</p>


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3308
Author(s):  
Paola Mazzoglio ◽  
Ilaria Butera ◽  
Pierluigi Claps

The collection and management of hydrological data in Italy has been dealt with at national level, initially, by the National Hydrological Service (SIMN), and at regional level in the last 40 years. This change has determined problems in the availability of complete and homogeneous data for the whole country. As of 2020, an updated and quality-controlled dataset of the historical annual maxima rainfall in Italy is still lacking. The Italian Rainfall Extreme Dataset (I-RED) has recently been created to allow studies to be performed with a homogeneous dataset at a national level. In this paper, the methodological approach adopted to build an improved and quality-controlled version of I-RED (in terms of both the rainfall depth values and the position of the rain gauges) is presented. The new database can be used as a more reliable research support for the frequency analysis of the rainfall extremes. This new I2-RED database contains rainfall annual maxima rainfall of 1, 3, 6, 12 and 24 h from 1916 until 2019, counts 5265 rain gauges and has been corroborated by a re-positioning and elevation-checking of 15% of the stations. A descriptive analysis of the maximum values of the stations, which provides an additional quality check and reveals different intriguing spatial features of Super-Extreme rainfall events, is also presented.


2019 ◽  
Vol 20 (9) ◽  
pp. 1829-1850 ◽  
Author(s):  
Raúl A. Valenzuela ◽  
René D. Garreaud

AbstractExtreme rainfall events are thought to be one of the major threats of climate change given an increase of water vapor available in the atmosphere. However, before projecting future changes in extreme rainfall events, it is mandatory to know current patterns. In this study we explore extreme daily rainfall events along central-southern Chile with emphasis in their spatial distribution and concurrent synoptic-scale circulation. Surface rain gauges and reanalysis products from the Climate Forecast System Reanalysis are employed to unravel the dependency between extreme rainfall and horizontal water vapor fluxes. Results indicate that extreme rainfall events can occur everywhere, from the subtropical to extratropical latitudes, but their frequency increases where terrain has higher altitude, especially over the Andes Mountains. The majority of these events concentrate in austral winter, last a single day, and encompass a north–south band of about 200 km in length. Composited synoptic analyses identified extreme rainfall cases dominated by northwesterly (NW) and westerly (W) moisture fluxes. Some features of the NW group include a 300-hPa trough projecting from the extratropics to subtropics, a surface-level depression, and cyclonic winds at 850 hPa along the coast associated with integrated water vapor (IWV) > 30 mm. Conversely, features in the W group include both a very weak 300-hPa trough and surface depression, as well as coastal westerly winds associated with IWV > 30 mm. About half of extreme daily rainfall is associated with an atmospheric river. Extreme rainfall observed in W (NW) cases has a strong orographic (synoptic) forcing. In addition, W cases are, on average, warmer than NW cases, leading to an amplified hydrological response.


1998 ◽  
Vol 37 (11) ◽  
pp. 97-104
Author(s):  
L. Neppel ◽  
M. Desbordes ◽  
J. M. Masson

When large periods of observation are considered, the densest information are often a collection of the daily rain gauges network. As this information is scattered in space, the stochastic results and specially the rainfall risk assessment, are biased because of the rainfall events that are not ‘observed’ by the network. Rainfall risk can be assessed using a punctual approach with the estimation of regional return period of a punctual rainfall depth exceeding a given value, or using a spatial approach with the frequency analysis of the areas of isohyets defined at a given rain threshold τ. This last approach consists, for a given τ, in estimating the return period of isohyet areas. Using simulation, a method of unbiased rainfall risk assessment is proposed for the Languedoc-Roussillon region (France). It has been shown that the bias influence is negligible for the regional return periods of isohyet areas, for 24-hour and 48-hour duration, when compared to their confident limits. On the contrary the return periods of punctual rainfall depths above a given value are more sensitive: for values above 170 mm/24h and 270 mm/48h, the biased return periods could be up to 3 times overestimated.


2019 ◽  
Author(s):  
Pengcheng Xu ◽  
Dong Wang ◽  
Vijay P. Singh ◽  
Yuankun Wang ◽  
Jichun Wu ◽  
...  

Abstract. Due to global climate change and urbanization, more attention has been paid to decipher the nonstationary multivariate risk analysis from the perspective of probability distribution establishment. Because of the climate change, the exceedance probability belonging to a certain extreme rainfall event would not be time invariant any more, which impedes the widely-used return period method for the usual hydrological and hydraulic engineering practice, hence calling for a time dependent method. In this study, a multivariate nonstationary risk analysis of annual extreme rainfall events, extracted from daily precipitation data observed at six meteorological stations in Haihe River basin, China, was done in three phases: (1) Several statistical tests, such as Ljung-Box test, and univariate and multivariate Mann-Kendall and Pettist tests were applied to both the marginal distributions and the dependence structures to decipher different forms of nonstationarity; (2) Time-dependent Archimedean and elliptical copulas combined with the Generalized Extreme Value (GEV) distribution were adopted to model the distribution structure from marginal and dependence angles; (3) A design life level-based (DLL-based) risk analysis associated with Kendall's joint return period (JRPken)and AND's joint return period (JRPand) methods was done to compare stationary and nonstationary models. Results showed DLL-based risk analysis through the JRPken method exhibited more sensitivity to the nonstationarity of marginal and bivariate distribution models than that through the JRPand method.


2020 ◽  
Vol 43 (4) ◽  
Author(s):  
Angelica Nardo Caseri ◽  
Carlos Frederico Angelis ◽  
Vinícius Banda Sperling ◽  
Etienne Leblois

Extreme rainfall events are one of the natural phenomena that cause more damages. These events are known to be well localized, especially in tropical and subtropical climate regions such as southeastern Brazil. These events have high heterogeneity and the evolution of rain cells changes is quick, the forecast and knowledge of these extreme rainfall events still represent a challenge for the scientific community, such as the spatial variability of rainfall. For this, data from the weather radar installed in Campinas city were used, which generates new radar images every 10 minutes, and data from twenty-nine rain gauges located in the region. For this, 16 rainfall events were selected, located in the region of Campinas/SP, southeast of Brazil, a region that has already recorded many events. For this study, rain and intermittent zones were analyzed separately. This study helps to understand the main statistical characteristics of severe events, mainly located in the region of Campinas. In addition, the information extracted and the analyzes carried out in this study can be used as input data for models that generate possible rainfall scenarios, ensembles, such as, methods based on geostatistics or machine learning.


2020 ◽  
Author(s):  
Katelyn Johnson ◽  
Jeff Smithers

<p>The estimation of design rainfalls and design floods are required by engineers and hydrologists to design and quantify the risk of failure of hydraulic structures. Extreme design rainfall quantities such as high-return period rainfalls and the probable maximum precipitation (PMP) are needed to design high-hazard hydraulic structures. In South Africa, previous design rainfall estimates have been produced up to the 200 year return period. PMP estimates were last determined nearly 50 years ago based on only 30 years of data. Most studies on extreme rainfall reported are based on frequency analysis assuming stationary conditions. Previous studies in South Africa have assumed a stationary climate. However, the assumption of a stationary climate in rainfall and flood frequency analysis has been challenged owing to evidence of climate change. Recent literature indicates that the magnitude and frequency of extreme rainfall events has been changing and this is likely to continue in future. Hence, methods to account for trends in extreme rainfall events in a changing environment need to be developed. In addition, the concept of PMP, particularly as used for the design and safety evaluation of large dams in South Africa, is being challenged with the recommendation that high-return period design rainfalls be used in these assessments. The aims of this study are: (i) to estimate extreme design rainfall values, with a focus on return periods greater than 200 years, (ii) to update PMP estimates using updated data and modernised methods, and (iii) to account for non-stationary climate data in the estimation of these extreme rainfall events in South Africa. Frequency analysis using LH-moments, which more accurately fit the upper tail of distributions, have been used to estimate high-return period design rainfalls. Regular L-moments are shown to overestimate the extreme rainfall quantities when compared to LH-moments by giving undue favour to outliers. PMP estimates have been determined using a storm maximisation and transposition approach. Radial Basis Functions (RFBs) have been used to transpose PMP estimates to ungauged locations, producing PMPs for the entire country. Approximately 80 % of the new PMPs are greater than the previous estimates. This is probably due to the many limitations of the old approach and differences used in the new approach, indicating that the new approach undertaken in this study may provide improved estimates. The PMP represents the upper limit of extreme rainfall, however, comparisons of high-return period rainfalls to the PMP show that the PMP is sometimes exceeded by the high-return period rainfalls. To develop methods to estimate extreme design rainfall events in a non-stationary climate, this study explores the impacts of climate drivers, such as the Southern Oscillation Index (SOI), and changes in atmospheric variables, such as dew point temperature, on high-return period rainfalls and the PMP.</p>


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2285
Author(s):  
Daniel A. Segovia-Cardozo ◽  
Leonor Rodríguez-Sinobas ◽  
Andrés Díez-Herrero ◽  
Sergio Zubelzu ◽  
Freddy Canales-Ide

Tipping bucket rain gauges (TBR) are widely used worldwide because they are simple, cheap, and have low-energy consumption. However, their main disadvantage lies in measurement errors, such as those caused by rainfall intensity (RI) variation, which results in data underestimation, especially during extreme rainfall events. This work aims to understand these types of errors, identifying some of their causes through an analysis of water behavior and its effect on the TBR mechanism when RI increases. The mechanical biases of TBR effects on data were studied using 13 years of data measured at 10 TBRs in a mountain basin, and two semi-analytical approaches based on the TBR mechanism response to RI have been proposed, validated in the laboratory, and contrasted with a simple linear regression dynamic calibration and a static calibration through a root-mean-square error analysis in two different TBR models. Two main sources of underestimation were identified: one due to the cumulative surplus during the tipping movement and the other due to the surplus water contributed by the critical drop. Moreover, a random variation, not related to RI, was also observed, and three regions in the calibration curve were identified. Proposed calibration methods have proved to be an efficient alternative for TBR calibration, reducing data error by more than 50% in contrast with traditional static calibration.


2009 ◽  
Vol 48 (3) ◽  
pp. 502-516 ◽  
Author(s):  
Pao-Shin Chu ◽  
Xin Zhao ◽  
Ying Ruan ◽  
Melodie Grubbs

Abstract Heavy rainfall and the associated floods occur frequently in the Hawaiian Islands and have caused huge economic losses as well as social problems. Extreme rainfall events in this study are defined by three different methods based on 1) the mean annual number of days on which 24-h accumulation exceeds a given daily rainfall amount, 2) the value associated with a specific daily rainfall percentile, and 3) the annual maximum daily rainfall values associated with a specific return period. For estimating the statistics of return periods, the three-parameter generalized extreme value distribution is fit using the method of L-moments. Spatial patterns of heavy and very heavy rainfall events across the islands are mapped separately based on the aforementioned three methods. Among all islands, the pattern on the island of Hawaii is most distinguishable, with a high frequency of events along the eastern slopes of Mauna Kea and a low frequency of events on the western portion so that a sharp gradient in extreme events from east to west is prominent. On other islands, extreme rainfall events tend to occur locally, mainly on the windward slopes. A case is presented for estimating return periods given different rainfall intensity for a station in Upper Manoa, Oahu. For the Halloween flood in 2004, the estimated return period is approximately 27 yr, and its true value should be no less than 13 yr with 95% confidence as determined from the adjusted bootstrap resampling technique.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Sign in / Sign up

Export Citation Format

Share Document