Effects of endotracheally administered distilled water and normal saline on the arterial blood gases of dogs

1982 ◽  
Vol 11 (11) ◽  
pp. 600-604 ◽  
Author(s):  
Michael I. Greenberg ◽  
Steven I. Baskin ◽  
Adele M. Kaplan ◽  
Francis J. Urrichio
PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262263
Author(s):  
Yoichiro Kitajima ◽  
Nana Sato Hashizume ◽  
Chikako Saiki ◽  
Ryoji Ide ◽  
Toshio Imai

Purpose We examined the cardiorespiratory effect of dexmedetomidine, an α2- adrenoceptor/imidazoline 1 (I1) receptor agonist, in spontaneously breathing adult rats. Methods Male rats (226−301 g, n = 49) under isoflurane anesthesia had their tail vein cannulated for drug administration and their tail artery cannulated for analysis of mean arterial pressure (MAP), pulse rate (PR), and arterial blood gases (PaO2, PaCO2, pH). After recovery, one set of rats received normal saline for control recording and was then divided into three experimental groups, two receiving dexmedetomidine (5 or 50 μg·kg−1) and one receiving normal saline (n = 7 per group). Another set of rats was divided into four groups receiving dexmedetomidine (50 μg·kg−1) followed 5 min later by 0.5 or 1 mg∙kg−1 atipamezole (selective α2-adrenoceptor antagonist) or efaroxan (α2-adrenoceptor/I1 receptor antagonist) (n = 6 or 8 per group). Recordings were performed 15 min after normal saline or dexmedetomidine administration. Results Compared with normal saline, dexmedetomidine (5 and 50 μg·kg−1) decreased respiratory frequency (fR, p = 0.04 and < 0.01, respectively), PR (both p < 0.01), and PaO2 (p = 0.04 and < 0.01), and increased tidal volume (both p = 0.049). Dexmedetomidine at 5 μg·kg−1 did not significantly change minute ventilation (V′E) (p = 0.87) or MAP (p = 0.24), whereas dexmedetomidine at 50 μg·kg−1 significantly decreased V′E (p = 0.03) and increased MAP (p < 0.01). Only dexmedetomidine at 50 μg·kg−1 increased PaCO2 (p < 0.01). Dexmedetomidine (5 and 50 μg·kg−1) significantly increased blood glucose (p < 0.01), and dexmedetomidine at 50 μg·kg−1 increased hemoglobin (p = 0.04). Supplemental atipamezole or efaroxan administration similarly prevented the 50 μg·kg−1 dexmedetomidine-related cardiorespiratory changes. Principal conclusion These results suggest that dexmedetomidine-related hypoventilation and hypertension are observed simultaneously and occur predominantly through activation of α2-adrenoceptors, but not I1 receptors, in spontaneously breathing adult rats.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Chiara Robba ◽  
Dorota Siwicka-Gieroba ◽  
Andras Sikter ◽  
Denise Battaglini ◽  
Wojciech Dąbrowski ◽  
...  

AbstractPost cardiac arrest syndrome is associated with high morbidity and mortality, which is related not only to a poor neurological outcome but also to respiratory and cardiovascular dysfunctions. The control of gas exchange, and in particular oxygenation and carbon dioxide levels, is fundamental in mechanically ventilated patients after resuscitation, as arterial blood gases derangement might have important effects on the cerebral blood flow and systemic physiology.In particular, the pathophysiological role of carbon dioxide (CO2) levels is strongly underestimated, as its alterations quickly affect also the changes of intracellular pH, and consequently influence metabolic energy and oxygen demand. Hypo/hypercapnia, as well as mechanical ventilation during and after resuscitation, can affect CO2 levels and trigger a dangerous pathophysiological vicious circle related to the relationship between pH, cellular demand, and catecholamine levels. The developing hypocapnia can nullify the beneficial effects of the hypothermia. The aim of this review was to describe the pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest.According to our findings, the optimal ventilator strategies in post cardiac arrest patients are not fully understood, and oxygen and carbon dioxide targets should take in consideration a complex pattern of pathophysiological factors. Further studies are warranted to define the optimal settings of mechanical ventilation in patients after cardiac arrest.


1978 ◽  
Vol 46 (1) ◽  
pp. 171-174 ◽  
Author(s):  
V. Pratap ◽  
W. H. Berrettini ◽  
C. Smith

Pranayama is a Yogic breathing practice which is known experientially to produce a profound calming effect on the mind. In an experiment designed to determine whether the mental effects of this practice were accompanied by changes in the arterial blood gases, arterial blood was drawn from 10 trained individuals prior to and immediately after Pranayama practice. No significant changes in arterial blood gases were noted after Pranayama. A neural mechanism for the mental effects of this practice is proposed.


PEDIATRICS ◽  
1996 ◽  
Vol 97 (3) ◽  
pp. 295-300
Author(s):  
G. Ganesh Konduri ◽  
Daisy C. Garcia ◽  
Nadya J. Kazzi ◽  
Seetha Shankaran

Objective. Adenosine infusion causes selective pulmonary vasodilation in fetal and neonatal lambs with pulmonary hypertension. We investigated the effects of a continuous infusion of adenosine on oxygenation in term infants with persistent pulmonary hypertension of newborn (PPHN). Design. A randomized, placebo-controlled, masked trial comparing the efficacy of intravenous infusion of adenosine to normal saline infusion over a 24-hour period. Setting. Inborn and outborn level III neonatal intensive care units at a university medical center. Participants. Eighteen term infants with PPHN and arterial postductal Po2 of 60 to 100 Torr on inspired O2 concentration of 100% and optimal hyperventilation (PaCo2 &lt;30 Torr) were enrolled into the study. Study infants were randomly assigned to receive a placebo infusion of normal saline, or adenosine infusion in doses of 25 to 50 µg/kg/min over a 24-hour period. Results. Nine infants each received adenosine or placebo. The two groups did not differ in birth weight, gestational age, or blood gases and ventilator requirements at the time of entry into the study. Four of nine infants in the adenosine group and none of the placebo group had a significant improvement in oxygenation, defined as an increase in postductal PaO2 of ≥20 Torr from preinfusion baseline. The mean PaO2 in the adenosine group increased from 69 ± 19 at baseline to 94 ± 15 during 50 µg/kg/min infusion rate of adenosine and did not change significantly in the placebo group. Arterial blood pressure and heart rate did not change during the study in either group. The need for extracorporeal membrane oxygenation, incidence of bronchopulmonary dysplasia, and mortality were not different in the two groups. Conclusion. Data from this pilot study indicate that adenosine infusion at a dose of 50 µg/kg/min improves PaO2 in infants with PPHN without causing hypotension or tachycardia. Larger trials are needed to determine its effects on mortality and/or need for extracorporeal membrane oxygenation in infants with PPHN.


2007 ◽  
Vol 102 (6) ◽  
pp. 2201-2206 ◽  
Author(s):  
Wenhong Peng ◽  
Jianguo Zhuang ◽  
Kevin S. Harrod ◽  
Fadi Xu

Apnea is a common complication in infants infected by respiratory syncytial virus (RSV). A recent study has shown that intranasal inoculation of RSV in conscious weanling rats strengthens the apneic responses to right atrial injection of capsaicin (CAP), leading to 66% mortality. The objectives of the present study were to determine 1) whether RSV infection changes baseline minute ventilation (V̇e) and arterial blood gases in anesthetized rats; 2) what the effects of RSV infection are on the respiratory responses to CAP; and 3) whether the RSV-strengthened apneic responses are age dependent. Our experiments were conducted in anesthetized and spontaneously breathing rats divided into four groups of weanling and adult rats that received either intranasal inoculation of RSV or virus-free medium. Two days after RSV infection (0.7 ml/kg), animal blood gases, baseline V̇e, and V̇e responses to right atrial injection of three doses of CAP (4, 16, and 64 μg/kg) were measured and compared among the four groups. Our results showed that RSV infection increased respiratory frequency (∼25%, P < 0.05) in weanling but not adult rats, with little effect on arterial blood gases. RSV infection amplified the apneic responses to CAP in weanling but not adult rats, characterized by increases in the initial (40%) and the longest apneic duration (650%), the number of apneic episodes (139%), and the total duration of apneas (60%). These amplifications led to 50% mortality ( P < 0.05). We conclude that RSV infection increases respiratory frequency and strengthens the apneic responses to CAP only in anesthetized weanling but not adult rats.


1992 ◽  
Vol 263 (3) ◽  
pp. H919-H928 ◽  
Author(s):  
S. M. Bradley ◽  
F. L. Hanley ◽  
B. W. Duncan ◽  
R. W. Jennings ◽  
J. A. Jester ◽  
...  

Successful fetal cardiac bypass might allow prenatal correction of some congenital heart defects. However, previous studies have shown that fetal cardiac bypass may result in impaired fetal gas exchange after bypass. To investigate the etiology of this impairment, we determined whether fetal cardiac bypass causes a redistribution of fetal regional blood flows and, if so, whether a vasodilator (sodium nitroprusside) can prevent this redistribution. We also determined the effects of fetal cardiac bypass with and without nitroprusside on fetal arterial blood gases and hemodynamics. Eighteen fetal sheep were studied in utero under general anesthesia. Seven fetuses underwent bypass without nitroprusside, six underwent bypass with nitroprusside, and five were no-bypass controls. Blood flows were determined using radionuclide-labeled microspheres. After bypass without nitroprusside, placental blood flow decreased by 25–60%, whereas cardiac output increased by 15–25%. Flow to all other fetal organs increased or remained unchanged. Decreased placental blood flow after bypass was accompanied by a fall in PO2 and a rise in PCO2. Nitroprusside improved placental blood flow, cardiac output, and arterial blood gases after bypass. Thus fetal cardiac bypass causes a redistribution of regional blood flow away from the placenta and toward the other fetal organs. Nitroprusside partially prevents this redistribution. Methods of improving placental blood flow in the postbypass period may prove critical to the success of fetal cardiac bypass.


1985 ◽  
Vol 59 (6) ◽  
pp. 1955-1960 ◽  
Author(s):  
B. R. Walker ◽  
E. M. Adams ◽  
N. F. Voelkel

As a fossorial species the hamster differs in its natural habitat from the rat. Experiments were performed to determine possible differences between the ventilatory responses of awake hamsters and rats to acute exposure to hypoxic and hypercapnic environments. Ventilation was measured with the barometric method while the animals were conscious and unrestrained in a sealed plethysmograph. Tidal volume (VT), respiratory frequency (f), and inspiratory (TI) and expiratory (TE) time measurements were made while the animals breathed normoxic (30% O2), hypercapnic (5% CO2), or hypoxic (10% O2) gases. Arterial blood gases were also measured in both species while exposed to each of these atmospheric conditions. During inhalation of normoxic gas, the VT/100 g was greater and f was lower in the hamster than in the rat. Overall minute ventilation (VE/100 g) in the hamster was less than in the rat, which was reflected in the lower PO2 and higher PCO2 of the hamster arterial blood. When exposed to hypercapnia, the hamster increased VE/100 g solely through VT; however, the VE/100 g increase was significantly less than in the rat. In response to hypoxia, the hamster and rat increased VE/100 g by similar amounts; however, the hamster VE/100 g increase was through f alone, whereas the rat increased both VT/100 g and f. Mean airflow rates (VT/TI) were no different in the hamster or rat in each gas environment; therefore most of the ventilatory responses were the result of changes in TI and TE and respiratory duty cycle (TI/TT).


Sign in / Sign up

Export Citation Format

Share Document