Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate

2000 ◽  
Vol 132 (2-3) ◽  
pp. 251-255 ◽  
Author(s):  
R.L Sun ◽  
D.Z Yang ◽  
L.X Guo ◽  
S.L Dong
Author(s):  
Shingo Iwatani ◽  
Yasuhito Ogata ◽  
Keisuke Uenishi ◽  
Kojiro F. Kobayashi ◽  
Akihiko Tsuboi

In order to improve a wear resistance of aluminium alloy, we proposed a diode laser cladding on the surface of a A5052 aluminium alloy. Firstly, an applicability of diode laser to laser cladding was evaluated. In this result, application of diode laser made it possible to obtain stable beads in low heat input compared with CO2 laser. According to the increase in aluminium content in the obtained clad layer, the microstructure of the clad layer changed as γ (8∼20%) → γ + α (10∼30%) → Fe3Al (30%∼). At the interface between the clad layer and the aluminium alloy substrate, the reaction layer consisting of Fe2Al5 and FeAl3 formed. In the abrasion wear the obtained clad layers exhibited a higher wear resistance compared with the aluminium alloy.


2019 ◽  
Vol 116 (6) ◽  
pp. 634 ◽  
Author(s):  
Samar Reda Al-Sayed Ali ◽  
Abdel Hamid Ahmed Hussein ◽  
Adel Nofal ◽  
Salah Ibrahim Hassab Elnaby ◽  
Haytham Elgazzar

A wear resistant coating was successfully made on an annealed Ti-6Al-4V titanium alloy by laser surface cladding using 60 wt.% WC + wt.% 40 NiCrBSi powder blends. Coaxial laser cladding was performed by means of Yb:YAG disk laser with a 3-KW continuous wave. Different laser interaction times were attempted to get the optimal conditions for promising mechanical properties. The new contribution was to accomplish larger clad layer thickness with applying the shortest possible laser interaction time that can achieve superior clad layer properties. This will decrease energy consumption with an expected money saving which is an essential factor for successful engineering solutions. A high powder flow rate of 20 g.min−1 was intended in order to obtain a thick, nonporous and crack free clad layer. The clad samples were subjected to thorough microstructure investigations, in addition to microhardness and wear evaluation. The coating so produced exhibits multiple hardness values and exceptional wear resistance under adhesive/sliding wear conditions. The obtained results expose clad layer with superior quality that was achieved at a laser interaction time of 0.3 s. An enhancement in the microhardness values of the clad layers by more than fourfold was attained and the wear resistance was thus significantly improved.


1976 ◽  
Vol 15 (2) ◽  
pp. 108-110 ◽  
Author(s):  
O. B. Chevela ◽  
A. S. Nagin ◽  
A. G. Cherdakli ◽  
V. N. Gadalov

2008 ◽  
Vol 368-372 ◽  
pp. 1203-1205 ◽  
Author(s):  
Min Zheng ◽  
Ding Fan ◽  
Xiu Kun Li ◽  
Qi Bin Liu ◽  
Wen Fei Li ◽  
...  

Based on a high power CO2 laser beam passing by pyramid polygon mirror, the bioceramic coatings of gradient composition were fabricated on titanium alloy substrate (Ti-6Al-4V). The relations among laser processing parameters, microstructure and biocompatibility of the gradient bioceramic coatings were investigated. The results indicated that the contents of rare earth oxide additions had an immediate effect on the formation of bioactive phases. The gradient bioceramic coatings showed favorable biocompatibility in vivo after they were implanted into canine femur for 45, 90, and 180 days, respectively. The bioceramic coatings of Ca/P=1.4 and 0.6wt.% Y2O3 totally combined with new bones merely implanted for 45 days. Furthermore, the MTT (Methyl Thiazolyl Tetrazolium) colorimetry results of cell proliferation demonstrated that the cell growth distinctly increased on the gradient bioceramic coatings by laser cladding compared with the un-treated titanium alloy substrate.


Sign in / Sign up

Export Citation Format

Share Document